
ERMrest: an entity-relationship data storage service
for web-based, data-oriented collaboration.

Karl Czajkowski, Carl Kesselman, Robert Schuler, Hongsuda Tangmunarunkit
Information Sciences Institute
Viterbi School of Engineering

University of Southern California
Marina del Rey, CA 90292

Email: {karlcz,carl,schuler,hongsuda}@isi.edu

Abstract—Scientific discovery is increasingly dependent on a
scientist’s ability to acquire, curate, integrate, analyze, and share
large and diverse collections of data. While the details vary from
domain to domain, these data often consist of diverse digital
assets (e.g. image files, sequence data, or simulation outputs) that
are organized with complex relationships and context which may
evolve over the course of an investigation. In addition, discovery
is often collaborative, such that sharing of the data and its
organizational context is highly desirable. Common systems for
managing file or asset metadata hide their inherent relational
structures, while traditional relational database systems do not
extend to the distributed collaborative environment often seen
in scientific investigations. To address these issues, we introduce
ERMrest, a collaborative data management service which allows
general entity-relationship modeling of metadata manipulated
by RESTful access methods. We present the design criteria,
architecture, and service implementation, as well as describe
an ecosystem of tools and services that we have created to
integrate metadata into an end-to-end scientific data life cycle.
ERMrest has been deployed to hundreds of users across multiple
scientific research communities and projects. We present two
representative use cases: an international consortium and an
early-phase, multidisciplinary research project.

I. INTRODUCTION

Scientific discovery has undergone a profound transfor-
mation, driven by exponentially increasing amounts of data
generated by high-throughput instruments, pervasive sensor
networks, and large-scale computational analyses [1]. Scien-
tific collaboration has always been data-oriented, enabled by
the exchange of data through the lifetime of an investigation.
With todays data deluge, the traditional methods for data
organization and exchange during a scientific investigation
are inadequate. This results in significant investigator over-
heads [2] and unreproducable data [3]. While much attention
has been given to the publication, citation, and access of cu-
rated scientific data intended for publication [4], little attention
has been paid to the data management needs which show up
in daily practice of data-rich scientific collaborations.

In current practice, scientists often rely on directory struc-
tures in shared file systems, with data characteristics (i.e.
metadata) coded in file names, text files, or spreadsheets. If
collaboration extends beyond one institutional boundary, the
data may be stored in a cloud based storage system, such as as
Dropbox or Google Drive. These approaches are error prone,
become fragile as the complexity or size of the data grows,

are hard to evolve over time, and make it difficult to search
for specific data values.

In previous work, we have argued for an alternative ap-
proach based on scientific asset management [5]. We separate
the “science data” (e.g. microscope images, sequence data,
flow cytometry data) from the “metadata” (e.g. references,
provenance, properties, and contextual relationships). We have
also defined a data-oriented architecture which expresses col-
laboration as the manipulation of shared data resources housed
in complementary object (asset) and relational (metadata)
stores [6]. The metadata encode not only properties and refer-
ences of individual assets, but relationships among assets and
other domain-specific elements such as experiments, protocol
events, and materials.

A relational metadata model can be expressed as an entity-
relationship model (ERM), defining entity types (tables) and
relationships (foreign keys and associations). Many projects
can be well-served by simple models with only a handful
of entities and relationships, and non-experts can easily think
about their domain in terms of the main concepts which they
want to manipulate [14]. We introduce Entity-Relationship
Models via Representational State Transfer (ERMrest), a web
service where ER models can be created and maintained
by clients—incrementally introducing, using, and refining do-
main concepts in a collaborative, mutable metadata store.
The service provides a full-featured RESTful [7] interface to
underlying relational data and models.

Despite the popularity and utility of relational databases,
and renewed focus on their Cloud hosting, their data often
remain locked behind application-specific services and treated
as an internal component. We argue that relational storage
should be made directly accessible to web clients for scientific
collaboration. Costly, application-specific services to control
data access and update are replaced with generic storage tier
rules for atomicity and data integrity, combined with fine-
grained authorization to enforce trust-based chains of custody
within data-sharing communities. Thus, end users and user-
agents can directly consume and contribute science data within
a flexible and adaptive collaboration environment.

In this paper, we focus on the requirements, design and
implementation of the ERMrest service. We draw upon our
experience with several data-sharing projects to define the
problem space, but report on two representative applications:
first, a large complex, multinational consortium accelerating

ar
X

iv
:1

61
0.

06
04

4v
1

 [
cs

.D
B

]
 1

9
O

ct
 2

01
6

research on G-Coupled Protein Receptors; and second, a
multidisciplinary synaptomics research project as an example
of an early-phase, exploratory collaboration.

The rest of this paper is organized as follows. In Sec-
tion II we discuss key characteristics of the data-oriented
collaboration problem domain. In Section III, we describe
in detail the ERMrest service, followed in Section IV by
a brief discussion of the other components in the ERMrest
software ecosystem. In Section V, we describe the GPCR and
synaptomics use cases in more detail. We conclude with related
work in Section VI and conclusions in Section VII.

II. APPLICATION CHARACTERISTICS AND CHALLENGES

Our perspective on scientific asset management, data-
oriented collaboration, and the specifics of ERMrest as a
metadata catalog service have been informed by a number of
scientific projects for which we provide bioinformatics support.
Rather than bespoke solutions for each project, we have sought
archetypal requirements and evidence of feature gaps where
our model-driven, data-oriented tools could be enhanced to
support broad classes of collaboration.

Here, we outline the main application characteristics, illus-
trated by five ongoing projects: A) the hub for the FaceBase
project, organizing a central repository for data generated by a
number of individually-funded spoke sites; B) the microscopy
core for the Center for Regenerative Medicine and Stem
Cell Research (CIRM), offering microscope slide-scanning
as a service; C) the GUDMAP project, curating microscope
imagery with assessments and annotations by domain-experts;
D) the GPCR Consortium, an international collaboration to
discover and analyze G-Protein Coupled Receptor molecular
structures; and finally, E) Mapping the Dynamic Synaptome,
a multidisciplinary effort to develop methods for in vivo
measurement of the synaptome.

1) Heterogeneous metadata: A model-neutral metadata
catalog and associated services and applications allow reuse
of the same technology without repeated software development
to adapt services and applications for each project. Across our
projects, there are multiple data types and formats generated
on a daily basis, e.g. DNA sequencing; flow cytometry; chro-
matography; multi-dimensional simulation results; 2D and 3D
microscopy including tiled, multi-resolution zoom pyramids;
3D CT and micro-CT; and 2D time-series (video). These assets
must be acquired, named, stored, and tracked with scientific
context and provenance metadata so that they can be found
and consumed by relevant down-stream science users and
processing pipelines.

As file-like objects, all assets can share generic object meta-
data concepts such as reference, size, checksums, or file type.
However, different formats and modalities may have wildly
differing metadata relevant to consumers, e.g. different kinds
of timestamps, different kinds of instrument identifier and
acquisition parameters, and different dimensional or shaping
information.

Even more significant than variation in asset properties, dif-
ferent domain models can vary in their encoded relationships
and non-asset entity types. These additional ERM elements
can provide significant scientific context to the underlying

assets, e.g. recording information about events, protocols, and
materials. Depending on the level of formality in projects,
different kinds of provenance and quality-control metadata
may also be introduced.

2) Evolving data models: Not only should the technology
be configurable for different project-specific models, but the
models should be allowed to continue to evolve throughout a
project’s life-cycle, i.e. while the system is in use. Early-phase,
exploratory projects need quick setup and simple models while
users establish experiment protocols, collaboration methods,
metadata nomenclature, and coding standards. As projects
mature, users may identify new use cases and new formalisms
which early users would have never prioritized. Finally, as
projects transition to curating published data products, the
modeling goals can drift further from the lab or process-
management goals of an active, experimental project.

As an example, the GPCR scientific workflow is complex,
involving many distinct experiment methods with different
data-handling pipelines. Our pilot model focused on core
domain concepts and a proof-of-concept pipeline, introducing
the system for early test users. This core model continues to
evolve with experience, similar to most of our other projects;
but, due to the breadth of activities within the consortium,
it also expands in bursts as more tasks and objectives are
incorporated into the data-management system.

Typical of many repositories and analysis-based projects,
the FaceBase hub metadata was initially modeled after a
bulk export from an ancestor project. This repository model
expands as new spoke data is integrated. Likewise, the CIRM
and GUDMAP models were initially informed by existing
image archives and microscopy idioms. In all projects, models
continue to be refined in response to evolving user needs,
newly identified search goals, and various metadata curation
objectives.

The Synaptome project started from scratch with little
guiding data. We quickly found that very simple models could
be directly aligned to nascent laboratory workflow steps and
tuned as we worked. The catalog in some ways embodies
a structured laboratory notebook, providing data-entry rules
where we might otherwise face creative chaos.

3) Heterogeneous data source integration: Data and meta-
data may be sourced from legacy data sets, exports, and
publications; specialized instruments and instrument control
software; third-party laboratories; existing databases and lab
information management systems; or loosely coupled sources
like lab notebooks, spreadsheets, text files, and manual user
entry. To effectively support collaboration, data-management
solutions must lower barriers to data entry and encourage the
collection of experiment metadata before important scientific
context is lost and the value of the data extinguished.

Budding projects often have only spreadsheets or other
text manifest files, often with enigmatic naming schemes
and formatting. As they mature, these projects demand more
structured methods for recurring data acquisition. To integrate
a variety of instruments and other repeatable processes, we
observe the need for both custom scripting and easily reusable
file-handling tools discussed later in Section IV. To facilitate
manual procedures that would otherwise be covered by per-
sonal laboratory notebooks, we observe the need for simple

data-entry tools to prompt the user for structured information
and provide immediate data-validation feedback. These tools
should be driven by the project’s evolving data models so that
new model elements are automatically fitted with basic data-
entry forms and procedures.

GPCR has three academic sites all having existing local
databases containing construct design and expression informa-
tion which must be extracted, transformed and merged in the
consortium catalog. FaceBase inherited a relational database
dump from a content-management system used to construct
the previous, bespoke hub website, and continues to receive
data submissions as smaller exports from spoke sites. CIRM
and GUDMAP began with many image files but very little
structured metadata; they instead acquire most metadata as
data-entry by interactive users.

4) Data processing pipeline integration: Aside from data
sources, which introduce data and metadata into the system
based on human activity and other external laboratory events,
there is also a recurring need to integrate data processing
pipelines. These consume existing data and produce derived
data and/or metadata which return to the shared data store
to enrich the collaboration. There is a wide spectrum of
pipelines, varying in terms of: technology dependencies; cost
and duration of processing; level of human input in triggering
or controlling the pipeline; number of intermediate results
which are captured back into the shared asset and metadata
stores; and semantic relationship of any derived results to
the previously existing shared data. We observe the need for
an environment which is not biased towards any one form
of processing pipeline, so that a variety of lab processes
and technologies can easily contribute to a managed data
collaboration.

5) Data discovery, access, and consumption: Ultimately,
shared science data should be searchable and accessible for
data exploration. A user interface is needed to provide rich
searching and browsing capability to any user with a web
browser. It should guide users through the diverse data types
available during all stages of complex scientific workflows
and during all phases of projects. Like data-entry tools, this
capability should be model-driven and provide general insight
into the current state of the shared data resources even as
project models change, rather than being narrowly focused on
one specific scientific workflow or model.

Depending on the data type and nature of collaboration,
different modes of data consumption are important: general
metadata summary tables and documents; coded quality as-
sessments; statistical summaries; plots, thumbnails, and online
previews; or download links and URLs usable with domain-
specific applications and dedicated workstations. We observe
a need to allow optional, project-specific tailoring of these
presentations beyond what a pure ER domain model can
express.

6) Differentiated access control: In order to address a
range of projects, configurable policies are needed to allow
different mixtures of public, authenticated but read-only, and
authenticated read-write access. These different policies must
be applicable in a fine-grained way, so that multiple classes of
assets and metadata can be managed in one project and given
different access policies.

As a stable repository resource, the FaceBase hub receives
data submissions from contributing spokes. The hub curates
and integrates these disparate data products to provide three
tiers of repository data access: public metadata and thumbnail
imagery to advertise the data resource; login-protected online
data requiring acceptance of a data-use agreement; and offline
human subjects data protected by IRB and strict data distribu-
tion methods.

The CIRM microscopy core receives physical specimens
from client biologists and provides a slide scanning service,
making resulting digital imagery available to each correspond-
ing slide owner. The core staff manage this ongoing acquisition
process, curating metadata and bulk storage. The ongoing
GUDMAP collaboration studies a predefined set of images
and produces micro-anatomy annotations and other curated
byproducts, giving different levels of read or read-write access
to images, image metadata, and other byproducts depending
on user role.

The GPCR data are generated from three different sites
in disparate locations. Only the lab members associated with
the site performing the experiment are allowed to create or
update subsequent data along the experimental workflow. In
addition to data sharing among the three sites, a subset of data
must be shared across the distributed consortium as well as the
broader scientific community, all according to the consortium
data sharing policy and user roles.

The Synapse project involves a small, multidisciplinary
team including individuals from several labs. These few in-
dividual members have full access to embargoed data.

III. ERMREST

To address these application requirements, ERMrest pro-
vides a relational metadata store as a web service. It ex-
poses multiple catalogs, each with its own access-control
lists (ACLs), ER model, and content following that model.
Unlike many data-management solutions which are designed
or deployed with a priori knowledge of the data model,
ERMrest continuously adapts to the catalog model, providing
model-driven interfaces.1 With this approach, we eliminate
redundancies in data modeling and data model seepage at
multiple levels of the traditional Web application stack. We
enable users to create and evolve data models which represent
the semantic concepts in their domain, without the typical
slow cycle of product updates involving user feedback, new
development, and database schema migrations.

Our interface design approach can be summed up as “keep
simple things simple, and make complex things possible.”
We want to support idioms common to web services, clients,
scripts, and programming models. We prefer a rich set of
web resources, over which conventional HTTP methods can
be used from even trivial clients, using straightforward content
representations such as Javascript Object Notation (JSON) and
comma-separated values (CSV).

1The current ERMrest research software, based on PostgreSQL, understands
many common SQL data definition concepts. But, it is not capable of handling
completely arbitrary schemas using the full PostgreSQL object-relational
repertoire.

A. Technical Goals and Scoping

1) Meaningful URLs: We consider it acceptable or even
desirable for client programmers to induce new URLs based
on an understanding of the server’s resource space. We do not
expect our typical clients to exhaustively crawl a connected
set of representations to find every URL they might need to
visit. However, we also recognize the value of linked data
and consider it useful and important for URLs to be created,
discovered, exchanged, stored, and later accessed. We aim to
have well-behaving URLs to reference ERMrest resources,
and domain-specific ERMs may of course embed URLs in
their entity data. When ERM concepts or content are encoded
in URLs, we want simple, human-readable URL formats to
facilitate developer and user comprehension. However, we also
want rigorous formats to handle arbitrary concept and data
values which may include challenges such as punctuation,
whitespace, and non-ASCII characters.

2) Collaborative Data Architecture: We aim to directly
connect users and user-agents to mutable storage services
without the interposition of bespoke application servers. To
this end, the individual storage services must understand and
enforce fine-grained authorization directly in terms of end
user identity, attributes such as group membership, and access
control policies associated with the managed data resources.
Simultaneously, clients must be aware of the basic rules of
engagement for collaborative storage and tolerate storage state
configurations which can be produced by other members of
the collaboration.

3) Long-tail Scalability: Our target audience is not mass
consumer applications where hundreds of thousands to mil-
lions of clients need access to the same data sets or database.
Rather, our audience straddles the “long tail” of e-Science [8],
where many small collaborations may each involve merely
dozens of data-producing clients, dozens to hundreds of data-
consuming clients during the active phases of research, and
an unknown number of casual or single-use data-consuming
clients in later, passive phases of scientific libraries and
archives. It can be said that much science data is “written
once and read never,” but the value is in being able to find the
subsets of data worth revisiting, and this will rarely be known
at the time of acquisition.

Therefore, where ERMrest needs scaling is in the number
of small, project-specific catalogs, each with a viable content
model that simplifies collaboration and data discovery for that
team. It is not geared to support massive catalogs where the
bulk of science data is the catalog content itself, i.e. large-
scale measurement data encoded directly in relational tables,
or where the relational data requires non-trivial statistical
analysis. To serve the long tail of projects, we require the same
software stack to support many projects without a developer
modifying the service as each project’s content model evolves.

4) Full Lifecycle Support: We intend to support the full
lifecycle of scientific data including early experiment design;
early and production data acquisition; ad hoc and repeated
analyses; and publication. This flexibility demands: config-
urable access controls; an ERM which can evolve throughout
the project lifetime; and rich content access interfaces, capable
of supporting incremental update and retrieval as well as bulk
search. A single catalog should be able to support a mixed

httpd

query	processor

Catalog	
1

postgresql-server

Catalog	
N

.	.	.

REST	
Client

mod_wsgi

ERMrest
DB

dispatch(url)	à parser

connect(ast.catalog)	à dbc

introspect(dbc)	àmodel

translate(epath)	à sql

execute(sql)	à results

parse(url)	à ast

resolve(ast,	model)	à epath

response(results)	à repr.

authZ(dbc,	user,	perm)

Fig. 1. ERMrest service is a model-driven web service implementing multi-
tenant catalogs as separate PostgreSQL databases, each with a domain-specific
entity-relationship model. RESTful interfaces support catalog, model, ACL,
and data creation, retrieval, update, and deletion.

load of ongoing research, including embargoed data, while also
exposing final data to a wider audience. However, it should
also be practical to split data into separate catalogs or service
instances or to export data to publishing systems.

5) Data Portability: We also recognize that projects often
have changes in direction, funding, and priorities which force
technology change. We therefore wish to mitigate the scien-
tists’ risk and worry that data become captive to a system
in need of replacement. Through the use of standard ERM
concepts and standard tabular data encodings, we can ensure
that raw data is easily exported via the web interface. While
implementing client-visible ERM concepts in our service, we
also wish to allow a project administrator to intervene directly
in the backing data store. This can allow one to export the full
catalog (including model); to bypass limitations of our service
interface for more exotic data access modes; or to customize
the catalog ERM in ways not possible through the current web
resources. We consider such data portability to be essential for
long duration stewardship, and therefore a critical part of any
scientific data management methodology.

B. HTTP Interface and Semantics

We use an attribute-based naming style to structure URLs
in our interface. This means that domain concepts such as
table names or entity keys will appear in URLs. We also
follow a strict reading of the URL encoding rules [9]. We
use reserved characters (mostly punctuation characters) as
syntax in the URL. We require these special characters to be
“percent-encoded” when appearing as regular data not meant
as ERMrest syntax. This permits arbitrary Unicode content
within atomic elements of the URL, yet reads very simply for
common instances using plain ASCII content. We also support
complementary web standards including content-negotiation
and opportunistic concurrency control.

1) Catalog Management: To support multi-tenancy with
differentiated access control, we expose catalog management
as a top-level resource /ermrest/catalog/ where a
POST method can create a new catalog. Each new catalog
has a brief document representation and its own URL, e.g.
/ermrest/catalog/1, supporting the DELETE operation

to retire it. The catalog document includes its current ACLs,
which are also exposed as sub-resources, each having their
own URL for direct management.

2) ERM Management: To support domain models, the
catalog ERM is exposed as another hierarchical docu-
ment structure at a sub-resource inside each catalog, e.g.
/ermrest/catalog/1/schema. A number of kinds of
sub-resource (each instance having its own URL) are used to
manipulate the ERM incrementally:

Schema A namespace within a catalog.
Table A table defined within one schema.
Column A column defined within one table.
Key A uniqueness constraint on one table.
Foreign Key Reference

An “outbound” reference constraint from one ta-
ble to a key in the same catalog.

Comment
A short, human-readable string can document
various model elements.

Annotation
Machine-readable documents can augment vari-
ous model elements for semantic enhancement.

All model resources support GET, while very few support PUT
for mutation. Instead, resources support DELETE to prune
out elements and containers support POST to introduce new
sub-resources. Entire sub-trees of resources can be created en
masse, e.g. a table with all its columns and constraints or a
schema with multiple tables can be sent in a single POST.

New tables are always specified without data content, and
separate resources must then be manipulated to load entity
data. Deletion of a table or column from the ERM also causes
all of its associated data content to disappear.

3) ERM Annotations: Our model annotation mechanism al-
lows semantic enhancement of pure ERM concepts. Schemas,
tables, columns, keys, and foreign key references each bear
an annotation container. The payload documents are keyed to
distinguish different kinds of annotation on the same model
element, using URIs to manage key collisions. An annotation
is a statement about the annotated model element, and the key
and payload are akin to a predicate and object, respectively.
Anyone may invent new kinds of annotation and assign a
key URI using any URI naming scheme for which they have
naming authority. In practice, we specify small, single-purpose
annotations using tag: URIs [10] and each defines very
simple payload which our custom clients can pick and choose
to support.

The payload must be a valid JSON document which could
be as simple as null. A client may interpret any annotation
they recognize and should ignore any they do not understand or
which they do not care to observe. ERMrest does not interpret
annotation payload but merely stores and distributes them to
help coordinate clients wishing a shared understanding beyond
the purely structural ERM rules.

4) Catalog Content: To support rich data access for both
incremental access and bulk search, the catalog data content
is exposed through a set of access mappings which apply to
the same catalog under different URL prefixes. Each access
mapping defines a particular attribute-based naming syntax for

URLs, naming a family of data resources. The different access
mappings provide overlapping access to the same mutable
catalog store, in essence providing aliased URLs suitable for
different client use cases.

Each ERMrest data URL denotes a tabular data set. Each
URL selects the catalog; selects the access mapping; navigates
tables and foreign keys of the ERM as a join product; sets a
target table and projection; optionally indicates data filters;
and optionally indicates page position. These concepts are
explored in more detail below.

5) Navigation and URL Structure: A path-like notation
is used in data URLs to express joins and filters as a kind
of “drill-down” from one table to another. Consider a few
illustrations (each extends the previous when appended):

/ermrest/catalog/1/entity/Subject
The entities from the Subject table;

.../id=17
...but only where id is 17;

.../Image
...instead returning entities from Image which are
related to the Subject entity by foreign key;

.../acquired::gt::2016-01-28
...but only where acquired date is more recent
than 2016-01-28;

...@sort(acquired::desc::,id)
...sorted by acquired date (descending), with
id to break ties;

...@after(2016-02-24,15)
...only for records following stream position
(2016-02-24, 15) for paging;

...?limit=20
...limit the page to 20 entities;

...&accept=csv
...demand CSV output, e.g. for bookmarks.

The preceding entity-set with join, filters, and page position
would then have this complete URL (wrapped to fit):

/ermrest/catalog/1/entity/Subject/id=17\
/Image/acquired::gt::2016-01-28@sort(ac\
quired::desc::,id)@after(2016-02-24,15)\
?limit=20&accept=csv

Because the entity API provides a whole-entity resource
mapping, no projection syntax is included, and the denoted
set will include all columns of the Image target table.

6) Filter Predicates: To support both bulk search and
simple incremental row access, data URLs can express filters
where each filter predicate can compare a column instance to
a constant value. We support equality and inequality operators,
an is-null operator, and several text-pattern operators.2

Negation, nesting parentheses, and both disjunctive and
conjunctive logical combiners allow arbitrary boolean func-

2We expose underlying database primitives for regular-expression matching,
which also supports substring match, and text search vectors which use
a natural language parser and dictionary for word-stemming and synonym
resolution. We also expose a special wildcard column name * which allows
text-pattern operators to search all text-like columns of an entity at once, rather
than having to express disjunctive predicates repeating the same operator and
constant pattern for many columns.

tions to be expressed as denormalized expression trees or
conjunctive/disjunctive normal form. The filter function is
evaluated over the path as a whole, so as with SQL, each
member of the join product must satisfy the entire filter
expression to avoid being excluded from results.

7) Structural Search: To support bulk searches, the path-
like syntax introduced above can be used to join tables in a
chain of pair-wise joins. At each stage, the preceding path
context is the table instance used for resolving filters or
further joins. The final path context is the target table for
projection in retrieval methods or determining the target of
mutation methods. Using more elaborate URL syntax, more
complex join-tree expressions permit structural search, where
the denoted entities are filtered by a sprawling join pattern
which reaches into different parts of the ERM simultaneously.
This more explicit join syntax allows one to choose among
multiple alternative foreign key reference constraints by calling
out their key or foreign key endpoints; to configure outer join
variants instead of the default inner join; and to join new
table instances to any ancestor of the path rather than only
the immediate parent element.

As a result, many “conjunctive” or “select-project-join”
queries can be encoded directly as data URLs. However, we do
not allow arbitrary join conditions, limiting the user to inner
and outer joins based on navigation of foreign key reference
constraints in the ERM.

8) Projection and Aggregation: The entity mapping
has implicit projection of all columns in target table. Other
mappings require explicit projection clauses at the end of the
path. These clauses express a list of column instances, with
optional syntax for: assigning an external alias to rename
columns in the external representation; qualifying column
names with a table instance alias to project columns from any
element of the query path other than the final path context; or
aggregate functions to compute simple value reductions like
counts, min/max, or array aggregation. As a convenience, bare
columns may also be used in an aggregate projection context,
in which case a representative value is arbitrarily chosen from
one of the rows prior to reduction. For grouped aggregations,
we split the projection into two parts: the group-key columns
and the optional columns subject to aggregate reduction or
aggregate update.

9) Mutation not Quite RESTful: We aim to avoid the “anti-
pattern” of remote-procedure call over HTTP, where arbitrarily
stateful operations are tunneled through an opaque service
endpoint. However, providing pragmatic, fine-grained access to
relational storage requires some compromise. It is impractical
to retrieve, edit, and submit entire tables full of data for every
update; it is likewise impractical to require one HTTP request
per row for actions involving many rows.

Every tabular data set may be retrieved or deleted using
the GET and DELETE methods, respectively. Only a small
subset of possible data URLs support PUT or POST methods
to apply new content. Our mutation methods are not purely
RESTful. They each manipulate a set of rows in the underlying
ERM storage through the access mapping, and side-effects are
visible through every data URL which overlaps the targeted
content. It is perhaps more accurate to think of each data URL
as representing a “query” resource, the results of which can be

Sample

ID
Well_ID
Notes
Experiment_ID
...

Fk

SEC_Asset

ID
Filename
URL
Sample_ID
...

Fk

Experiment

ID
Description
Notes
Creator
...

Fk

GET /ermrest/catalog/1/attribute/E:=Experiment/S:=Sample/SEC_Asset/\
 ID,Sample_ID,Filename,E:Creator,Sample_Notes:=S:Notes,URL

Columns projected from the joined tables

 "Experiment" AS "E"
 JOIN "Sample" AS "S" ON ("E"."ID"="S"."Experiment_ID")
 JOIN "SEC_Asset" AS t3 ON ("S"."ID"=t3."Sample_ID")

Rename output

Fig. 2. Structured query example with two joins and an attribute
projection including columns from all three tables in the depicted entity-
relationship model.

retrieved or used as input to a server-side mutation operation
which may merge further data supplied as input from the client.

Data URLs do not transition to “not found” status after
deletion, but merely begin to denote the empty set after
their matching entities or attributes are deleted. Our PUT,
POST, and DELETE methods correspond more accurately to
a PATCH method with different flavors of patch instruction,
merging some user-designated set into the relational store. All
operations express bulk, tabular access rather than having one
HTTP request per target entity. We think these patch-based
access methods are important for any web-based relational
store, but we remain open to reformulating their surface syntax
to better conform to web standards in the future.

C. Relational Data Mappings

For simplicity, ERMrest always uses data formats capable
of representing a sequence of tuples, even if the particular
named data resource is a degenerate case with set cardinality
of one (single tuple) or zero (empty set). Because we always
return sequences, an empty set is considered valid and will
be retrieved with a successful 200 OK status code. Simple
content-negotiation allows clients to choose between two main
tabular data representations. With application/json, a
JSON array of objects represents a sequence of tuples with
named column values. With text/csv, a CSV document
specifies header row and zero or more data rows. As suggested
previously, we support multiple data access mappings in the
URL space of the catalog:

1) entity: Set of whole entities of one table. Supports
insertion, retrieval, update, and deletion of whole entities from
that table. For retrieval and deletion, supports filtering which
may include contextual information from relational joins.

2) attribute: Set of partial entities of one table. Sup-
ports retrieval and deletion of attribute content. Deletion of
attributes means the clearing of individual columns in exist-
ing entities but never inserts nor removes entities from the
target table. Supports filtering which may include contextual
information from relational joins. For retrieval, the projected
content may also include contextual information from the same
relational joins.

3) attributegroup: Set of tuples reduced by group
aggregation and projected from one table or join. Supports
retrieval and update of grouped attribute content. For retrieval,
supports filtering and projection which may include contextual
information from relational joins. Projections include group
keys and may include computed aggregates. For update, group
keys are used to correlate existing entities in the target table
with tuples in the supplied input representation, and projections
are used to assign further input columns to target columns.
Each input tuple represents one update group where the
matching entities in the target table receive the same column
updates.

4) aggregate: A set of exactly one tuple reduced and
projected from a table or relational join with or without
filtering predicates. The single member of the set represents
the whole aggregate.

D. Data Retrieval Examples

Using the query-language features described above, we can
formulate a number of example URLs and retrieval scenarios.
Consider the three-element ERM depicted in Figure 2. Using
this model, we can retrieve one Sample entity:

GET /ermrest/catalog/1/entity/Sample/ID=5

A more complex retrieval URL is depicted in Figure 2
itself. Rather than considering only one table and a constraint
on the primary key ID column, all three tables are joined
and no filters are present. The query represents one row per
SEC_Asset but projects columns from all three tables.

Using outer joins, we could find experiments lacking
samples:

GET /ermrest/catalog/1/entity/S:=Sample\
/right(Experiment_ID)/S:ID::null::

which corresponds to this equivalent SQL:

SELECT t2.*
FROM "Sample" AS "S"
RIGHT OUTER JOIN "Experiment" AS t2

ON ("S"."Experiment_ID"=t2."ID")
WHERE "S"."ID" IS NULL;

E. Concurrency, Transaction, and Update Model

Each web request is performed under transaction control
and represents an atomic interaction with the catalog. A client
may order a sequence of requests to different resources and
be sure that they have been committed in that order, but
must cope with failures on each individual request. There
is no direct support for multi-request transactions, two-phase
commit protocols, etc.

We synthesize a monotonic catalog version for the HTTP
ETag response header and internal model cache manage-
ment. The entity tag is also recognized in If-Match and
If-None-Match headers to support opportunistic concur-
rency control. We use internal state-tracking tables to know
what version the catalog is at. Any direct, local access to
the backing SQL database must inform ERMrest of changes

by invoking special stored procedures which manipulate these
tables.

F. Implementation

The service is written in the Python language using the
web.py (www.webpy.org) web framework, and is hosted in the
Apache web server via mod_wsgi daemon processes. It uses
PostgreSQL databases to back each catalog. A simple registry
tracks all provisioned catalogs and their backing database
connection parameters. We also add a hidden database schema,
_ermrest in each catalog database to store management
state. The system architecture is depicted in Figure 1.

1) Access Control: We integrate with a web-based identity
and attribute provider to get web client identity and group
membership. We implement access control at the catalog level
in the service logic, using ACLs stored in the management
schema within the catalog so that policy, model, and data are
consistently under transaction control. We pass down client
authentication context as trusted SQL session parameters,
allowing the backing database to enforce row-level security
policies which can differentiate individual web users. This
policy feature is being experimentally validated in several pilot
projects and will likely be extended web-based management
features in future revisions.

The request processing flow is dispatched to one of two
daemon containers. One handles all ERM-related requests with
a SQL access role which manipulates backing databases and
schemas on the fly. The other handles all bulk data requests
with a less privileged SQL access role. This second role owns
SQL views and is granted permission to access tables but
is not their owner. This split-role configuration enables the
desired effect where row-level policies can automatically filter
all stored data access according to web client role.

2) Catalog Scalability: We do not see PostgreSQL as a
significant bottleneck. Small catalogs perform admirably even
on very modest server hardware. In our experience, large data
volumes for scientific research usually involve many, large bulk
data assets and require significant investment in object storage
infrastructure. Projects encounter limits to how much they
are willing to spend on terabytes to petabytes of bulk object
storage, while their metadata requirements can still easily be
solved by a commodity server running ERMrest, with room to
grow through basic server upgrades.

At the extreme long-tail end of the spectrum, ERMrest
multi-tenancy allows many catalogs in a single server instance.
This allows the packing of the maximum number of catalogs
into the least hardware resources, while still allowing for
an independent data model for each catalog. At its limits,
ERMrest will begin to exhaust the system resources needed
to sustain a pool of active database connections capable of
simultaneously using many database catalogs with low latency.

However, with its completely open source software stack,
the entire solution is easily virtualized, with one catalog per
server. This approach allows essentially arbitrary scale-out to
a world full of small collaborative projects, where each project
can fund its own quite small instance of the service stack
operated either on their own colocated physical hardware, their
own virtualized server platform, or on cloud hosting.

We operate the majority of our scientific data management
projects in single-project virtual servers, including ERMrest, a
static web server to host GUI applications and static HTML
pages, and a companion object store all behind a single vanity
domain name specific to that project. This approach also
benefits our full lifecycle objectives, as it becomes much easier
to prototype, operate, hand-off, or even retire a project-specific
storage environment on a rolling schedule.

3) SQL Catalog Customization: For many projects, we
apply some customization to the catalog database using local
SQL mechanisms. ERMrest maps each visible ERM element
to a corresponding SQL element such that local SQL access
is complementary to web-based access. This includes directly
applying user-specified table and column names, column types,
and data-integrity constraints. We exploit this as a vehicle to
explore new design ideas and to evaluate collaboration features
before they find their way into the web service design. This is
a trusted interface not managed by the same web-based access
control policies.

The most common enhancements fall into three main
categories: the application of PostgreSQL-native row-level se-
curity policies; SQL triggers to compute certain column values
and protect some as write-once, e.g. for managing accession
identifiers; and SQL views to express certain denormalized
presentations and group roll-ups which are generally useful
as dashboards for graphical clients or status representations
for workflow clients.

4) Exposing SQL Views: To permit ERM customization,
we expose each view as a read-only table and provide an
ERMrest-specific mechanism of pseudo-constraints to connect
such views into the model, declaring uniqueness or referential
integrity properties which we know the views obey.3 Thus,
our normal ERM navigation features can extend to such SQL
views and all model-driven client tools can exploit the view.
This is an escape-hatch for problems too awkward to solve
otherwise. At the time of writing, such SQL views require
local administrative access to create.

Web-managed views are an interesting topic, both to offer
this ability to less trusted clients and as underpinnings for
asynchronous query interfaces. An asynchronous query would
create a pseudonymous view which can then be accessed page
by page using our normal synchronous retrieval interfaces.
Such queries should support richer query languages and avoid
length limitations inherent in mapping query structure to
URL structure. We have deferred implementing remote view
management while we debate expressiveness versus safety for
less skilled or less trusted clients. We continue to gather use-
case requirements to help guide this decision process.

IV. ERMREST ECOSYSTEM

ERMrest enables an ecosystem of tools and methods. Here
we describe asset storage, graphical interface, and automated
agents which all contribute to the solution space.

3It is the modeler’s responsibility to declare accurate pseudo-constraints or
encounter confusing query behaviors. The system makes no attempt to analyze
view definitions and prove the correctness of the declared constraints nor to
test whether view results satisfy the constraints at run-time.

A. Hatrac: Object Store

Hatrac is simple object-store with the same end-user se-
curity integration used in ERMrest. Hatrac objects are file-
like data elements which are atomically created, destroyed, or
updated with new object-versions. It can use plain filesystem
storage or proxy to Amazon S3 or compatible object stores. In
either case, Hatrac provides a consistent service interface with
end-user authorization for individual objects or namespace
hierarchies. Hatrac is not directly dependent on ERMrest and
vice versa. However, in all our deployments, both are typically
deployed together to support sharing of assets and metadata.

B. Chaise: Model-Driven GUI

Chaise is a suite of graphical user interface applications
for browsing, search, editing, creating, and exporting ERMrest
catalog content via a web browser. Implemented in javascript
and HTML5 technology, Chaise dynamically generates a user
interface based on the ERM and data encountered in the
catalog. Chaise provides an experience that revolves around
entities and their relationships. We have explored faceted
search and basic text search interfaces, using structured queries
with joins and filter predicates. Search results are displayed
as tabular data, providing navigation to entity-oriented views
which present details of the entity as well as summaries of
related entities. A user can browse and explore a linked web
of human-friendly graphical application views isomorphic to
the underlying relational catalog content.

Chaise recognizes a number of optional model annotations
to allow the data modeler to customize presentation. For ex-
ample, tag:isrd.isi.edu,2016:visible-columns
supports ordered lists of columns to show in particular GUI
display contexts, overriding the default model-driven presenta-
tion. Other annotations are used to describe content transforms,
where entity data can be interpolated into an intermediate
Markdown [11] fragment which is rendered into HTML and
incorporated into the Chaise GUI. For example, one might
render a navigable link using one column’s value as anchor
text and another as the destination URL.

C. IOBox: Automated Agents

IObox (a combined “inbox” and “outbox”) is a family
of automated user-agents for dynamic orchestration of data
flow tasks. A user or instrument may place new files into an
“outbox” directory so that the agent will automatically convey
data to ERMrest and/or Hatrac. Likewise, the agent can retrieve
data and leave copies in an “inbox” location where a user,
instrument, or analysis pipeline can consume it.

IObox executes an event loop with configured rules. Data
come from a configured event listener or by polling a filesys-
tem location or catalog query. When data match a configured
rule, a chain of handlers is invoked to process the data. Built-
in handlers can extract metadata: from file names or paths;
from existing ERMrest content; by computing file checksums;
or from file content. Handlers can also compose or transform
accumulated metadata, upload file data to Hatrac or other
HTTP-based object stores, or add metadata to ERMrest.

Another kind of IOBox agent can connect to an ODBC-
compatible database management server (e.g. Microsoft

SQLServer, MySQL, etc.) and export a set of user-specified
query results in a portable serialization format. A comple-
mentary agent consumes this serialized export and loads
content into an ERMrest catalog. These agents can be used
for periodic extraction and replication of content from local
lab-management systems to collaborative catalogs shared by
multiple labs.

D. Condition-Action Processing

Many user-agents can integrate with ERMrest. In our pilot
projects, we often see that there are natural parts of the ERM
which already reflect stateful conditions for condition-action
process planning. Idiomatic queries for expressing actionable
conditions include: entities with certain coded state or quality-
assurance values; entities with URL columns representing
derived process results; outer-joins showing entities which lack
certain relationships to other companion entities; or aggregated
joins where certain heuristic thresholds can be applied to
related entity counts. Arbitrary mixtures of users and user-
agents can participate in condition-action processing. They can
collectively monitor and advance the state of the shared storage
by pushing in new scientific context, new asset references, and
updates to asset metadata. This can include integration of third-
party processing pipelines.

A simple approach to detecting an actionable condition
is through a cron job that is scheduled to periodically query
ERMrest and find data to process. By executing a task for
each discovered entity and updating ERMrest to reflect new
processing results, the cron job advances the state of the
environment in a way visible to external observers and future
iterations of itself. More sophisticated variants can maintain
error-tracking fields in the ERM to allow limited retry or to
flag failures for human intervention.

ERMrest can be configured to broadcast a change notice
to an AMQP message exchange after each catalog update,
alerting interested listeners that there may be new data. Rather
than a stateless cron job, a persistent agent can efficiently
interleave queries to ERMrest with blocking waits for these
change notices. This allows low latency response to new
conditions, without wastefully polling the catalog when content
is quiescent.

V. APPLICATIONS

In Section II, we characterized the scientific data-
management problem which we have generalized from a
number of data-oriented collaboration experiences. In this
section, we explore in more detail two of these applications
and explain how ERMrest has helped each. The GPCR and
synaptomics problems represent complex, distributed collabo-
ration and early-phase exploratory research, respectively.

A. GPCR Consortium

G-protein-coupled receptors (GPCRs) play a critical role
in a wide variety of human physiology and pathophysiological
conditions. As a drug target, GPCRs are highly valuable but
mechanistically poorly understood. As computational methods
are limited, the best method to determine their structure is
via X-Ray crystallography. A challenge is that the native
form of the GPCR may not form a stable crystal, so many

Constructd

id
target
...

Secf

id
sample
...

SdsPagef

id
experiment
...

E
xp

er
im

en
t A

ss
et

s

...
d: IO Box (DB)
f: IO Box (File)
p: Processing
Pipeline
U: User Interface

Biomassd

id
construct
...

Targetd

id
...

C
or

e

Construct
Alignmentp

id
construct
...

FcsSourcef

Id
…

Target
Alignmentp

id
target
...

FcsFilep

id
source
biomass
...

C
or

e
A

ss
et

s

...

Sampleu

id
biomass
experiment
...

Experimentu

id
…

SOPu

id
Sample

...

...

E
xp

er
im

en
t

*

*

Fig. 3. Select elements of GPCR catalog model. From top to bottom, four tiers
of entities and relationships have been added in phases: core protein concepts;
core assets including alignment data; experiment metadata; and most recently
experiment assets are now being incorporated into the shared repository.

slight mutations, called constructs, are designed and evaluated.
For each construct, the protein is synthesized and expressed
in mass through bacteria. The protein is then purified out
of the bacteria, and evaluated for quality. If the protein is
crystallized, the crystal will then be evaluated against high
energy light sources, and finally have its structure determined
by analysing the diffraction patterns. Various tests (assays)
using techniques such as flow cytometry, chromatography, and
gel electrophoresis images are used along the way to measure
the quality, quantity and stability of the resulting proteins.

Partly due to the complexity of this process, the three
dimensional structures are known for only 154 out of the
826 different GPCRs. Because of their importance, the GPCR
Consortium, a distributed group of academic and industrial
partners, has been formed to systematically evaluate a large
number of GPCR structures. Typically, all of the data associ-
ated with the process is managed in an ad hoc fashion, often
resulting in replicated experiments, lost data, and significant
investigator overheads. Given the scale and distribution of the
GPCR Consortium effort, this conventional approach to data
management would pose a significant obstacle to the goals of
the consortium.

Recognizing this challenge, the consortium has deployed
a distributed solution based on ERMrest with the objective of
organizing all consortium experiments and data. The heart of
our solution is an evolving ERMrest catalog to track research
products and pipeline state. Figure 3 illustrates essential parts
of the catalog ERM comprised of four tiers of entity types
and relationships developed in phases: A core ERM captures

the domain of GPCR targets, constructs, and biomasses; core
asset metadata tracks alignment and flow cytometry data
files; experiment metadata tracks additional processes; and
most recently, experiment asset metadata is beginning to track
chromatography and electrophoresis data files. Concurrent with
these major phases of ERM expansion, we also engaged the
early users to review and refine the elements within each tier.

All three academic sites have legacy databases with local
construct design and production information. We use IObox
relational export and import agents to maintain a harmonized,
multi-site record of core entities in the shared catalog. For file-
like experimental data such as flow cytometry (.FCS), chro-
matography (.CDF), or gel images (.JPG), disk-monitoring
IObox agents are deployed at each site. The agents share the
same general ingest pattern which is to check for filename
pattern, e.g. GPCRUSC20161013SDS1_ABC123.jpg for
a know experiment ID or UNKNOWN_ABC123.jpg for an
unknown experiment ID. Files are automatically added to the
shared object store and cross-linked with entities in ERMrest
based on detected metadata. The Chaise GUI is used for en-
tering experiment related metadata such as experiment design,
associated samples, purification protocols, or chemical com-
position. Assets which were detected by IObox with unknown
experiment context can be found by users using Chaise and
augmented with metadata after the fact.

Multiple processing and analysis pipelines are integrated as
condition-action sequences in cron jobs and persistent agents.
In practice, a longer sequence is sometimes implemented as
one script, triggered asynchronously by the initial condition
and performing several idempotent steps. This allows efficient
recovery from partial failures and performs complete tasks with
fewer independent polling agents, as intermediate failures are
all recognized as “incomplete” states which continue to match
the triggering condition.

In the core model, constructs arrive without alignment data.
A chain of condition-action steps, depicted in Figure 4(a),
show how the storage resources transition from one state to
another to fill in alignment data for a construct. Figure 4(b)
depicts a coupled condition-action sequence which prepares an
aggregated alignment of the target each time it receives a new
construct alignment. We actually store hashes of alignments
in the metadata catalog to efficiently express express a “stale
target” condition as a polling metadata query.

The FCS processing pipeline nests a set of simple
condition-action sequences as idempotent sub-tasks in a larger
bulk action. Figure 4(c) depicts processing of a multi-sample
FCS file asset. The triggering condition is that the correspond-
ing FCS source is “incomplete.” The bulk action includes
expanding the file into constituent single-sample FCS files,
each of which is further processed and summarized. The bulk
action can restart multiple times, recognize already completed
FCS file products, and continue working until completion.

Chaise is the main user interface for consortium data. We
use a number of Chaise-supported annotations on the catalog
model to customize data presentation, including adjustments to
visible columns for certain GUI contexts, rendering of URLs
and attributes as links in the web applications, and embedding
content showing interactive visualization elements or thumb-
nail images. As described previously in Section II, GPCR data

new construct

yaml in Hatrac

construct has
yaml URL

construct has
gpcrdb flag

alignment in
Hatrac

construct has
alignment URL

(A)
stale target
alignment

alignment in
Hatrac

(B)
new

FCS source

FCS source
processing
complete

(C)

FCS file in
Hatrac

FCS file in
ERMrest

(D)

1

n

n

target has
alignment URL

Fig. 4. GPCR condition-action processing pipelines. Observable data states
are depicted as labeled conditions, while processing actions are implied
as arrows transitioning from one state to the next: A) a new construct is
aligned using a third-party service, gpcrdb; B) an aggregate alignment is
maintained for each target, tracking its most recent construct alignments; C)
a multi-sample FCS source file is processed in bulk, generating idempotent
checkpoints for D) single-sample FCS file.

are subject to differentiated access controls, enforced by Hatrac
and ERMrest to provide consistent policy enforcement for web
browsers and any other networked clients.

Prior to our involvement, all consortium data was managed
in an ad hoc fashion. Local site databases and networked
storage appliances provided essentially all-or-nothing access
only to local content with inconsistent file naming conven-
tions, and most experiment metadata was locked in scientists’
personal notebooks. Our solution has introduced a consortium-
wide catalog for capturing: core protein structure results;
experiment and assay status across the protein determination
workflow; and a viable system for sharing data according
to the consortium data-sharing policy. Integrated acquisition,
processing, and system state presentation GUIs have reduced
the effort for users, increased visibility into workflow status,
helped increase data quality, and freed up time for actual
science.

The GPCR project has been in operation for 1.5 years.
There are 928 targets including non-GPCRs, 23,240 constructs,
78,673 expressions, and 51,752 FCS assets in the system. We
continue to expand the experiment data model tier to support
protein purification and crystallization process and asset track-
ing, including new asset types such as chromatography data
and gel electrophoresis images.

B. Mapping the Dynamic Synaptome

In 1894 Ramon Y Cajal first suggested that memories
are formed by changes in synaptic connections, a view that
is widely held by neuroscientists. Over the last 50 years,
studies examining the behavior of individual synapses have
not only demonstrated the presence of synaptic plasticity, but
also elucidated some of its major properties and underlying
mechanisms. However, it has not been possible to address
the question of how information is mapped onto patterns of
synapses across the brain, a prerequisite for understanding
the connection between brain structure and behavior. What
is needed are the means to measure the dynamic synaptome:
a map of the strength, location and polarity (excitatory or

inhibitory) of synapses in a living organism at different points
in time as they acquire new behaviors. In this project, we seek
to address this fundamental question by creating a new high-
throughput, scalable method that enables direct observation
and mapping of the dynamic synaptome of the brain of a living
organism.

Our paradigm closely couples three distinct technologi-
cal advances: an innovative method for creating recombinant
probes to label postsynaptic proteins in vivo, allowing synaptic
strength to be assessed in living animals without affecting
neuronal function; high-resolution, high-speed Selective Plane
Illumination Microscopy (SPIM) to measure the 3D concen-
tration of labeled postsynaptic proteins across the brain; and
a nimble and intuitive platform and associated algorithms
to drive high-throughput acquisition of protein concentration
maps from 3D images, to convert these maps into a com-
putable dynamic synaptome, and to follow the characteristics
of synapses over time. We are developing new techniques in all
three areas, and have developed an initial experiment protocol
to explore elements of the pipeline, using 3D brain images and
behavioral videos.

As for GPCR, we deployed an ERMrest catalog to track
experiments and data for this project. Figure 5 illustrates
essential parts of the system: zebrafish larvae are tracked as
subjects; SPIM images and behaviorial movies are collected
from instruments; SPIM image crops are extracted for targeted
brain regions; and analysis results are associated as asset URL
and scoring metadata on both cropped images and behavior
movies. The behavior movie analysis pipeline, depicted in Fig-
ure 5(C) is handled with condition-action automation similar
to those in GPCR.

In this early-stage, exploratory work, the image cropping
and image analyses Figure 5(D) are currently human-driven
processes. In practice an interactive user queries or browses
the catalog via the Chaise GUI to locate actionable data. They
process associated raw data assets using workstation-based,
interactive tools, and they submit cropped image and image
analysis results as new files via an IObox agent, similarly to
raw instrument data acquisition.

We use the Chaise GUI to collect metadata in lieu of
laboratory notebooks or any other lab information management
system. Modeled entities correspond directly to planned lab
activities, and SQL triggers generate accession identifiers,
which the user can easily transcribe to physical materials in
the lab and embed in the names of files processed later by
IObox agents. The preparation, imaging, and behavioral study
on each larva takes several hours, and the experimentalist has
plenty of time to record pertinent metadata.

Prior to this data-management system, our collaborators
made use of local lab filesystems in instruments and networked
storage appliances. We used a shared Dropbox folder to ex-
change early sample data between the three teams. With a half-
dozen active participants, our project is a microcosm of the
same data-management challenges seen in our larger national
and international projects. The file sizes, file counts, and
idiosyncratic naming conventions produced in early-phase re-
search threatened to overwhelm and interfere with productivity.
We find ourselves and our collaborators excited by the impact
our ERMrest-based tools are having. By introducing these

Movie

id
subject
...

Subject

id
...

Crop

id
source
...

Image

id
subject
...

no movie

movie plan
in ERMrest

movie asset
in Hatrac

movie URL
in ERMrest

(B)
image URL
in ERMrest

crop plan in
ERMrest

crop asset
in Hatrac

crop URL in
ERMrest

synaptome
asset in Hatrac

(D)

synaptome URL
in ERMrest

movie URL
in ERMrest

behavior data
in Hatrac

behavior URL
in ERMrest

score metadata
in ERMrest

(A) (C)

Fig. 5. Synaptome ERM (A) and condition-action sequence examples.
The catalog represents pre-registered experiment plans entered by users prior
to data-acquisition and processing: B) studies are entered into the catalog,
acquired on an instrument, and handed to an IObox agent which stores the
movie and adds the movie URL to the catalog; C) Movies are processed
automatically and the resulting behavior data is likewise stored and registered,
followed by a user reviewing the data and manually entering qualitative
metadata; D) Eliding the image acquisition flow, a user operates a workstation
to produce an image crop which is stored and registered via IObox, and then
a user operates a workstation to detect and extract synaptome data from the
image crop before it too is stored and registered.

data-sharing methods early, before we have even validated an
experiment pipeline or produced any science results, we are
accelerating the work; better organizing our data and activities
to understand the status of novel experimental techniques;
and evolving a data-management practice which, if we are
successful, will also be at the core of this new high-throughput
laboratory method.

VI. RELATED WORK

ERMrest can be viewed as a metadata system to support
publication. Digital repository systems, such as DSpace [12]
and Globus Publish [13], provide object and data collection
level metadata, similar to the ERMrest-Hatrac combination.
Digital repositories are primarily concerned with publication,
as opposed to the discovery process itself where one’s under-
standing of the domain model may evolve considerably and
hence these systems have very limited metadata models (e.g.
without relationships) and don’t support model evolution nor
support easy creation of multiple catalogs.

Other research has explored topics of integrated metadata
catalogs with key-value models [14]; distributed metadata
catalogs with key-value models [15]; and distributed relational
database access underpinning metadata catalogs [16]. How-
ever, these catalog support a flat, per-asset description of data,
and don’t support the structured models that ERMrest does,
nor do they provide RESTful interfaces. Research on metadata
catalogs has considered issues of flexible modeling [17], dy-
namic model generation and integration [18], and incorporating
semantic representations [19] into metadata catalogs. We differ
from this work in focusing on ER modeling as being more
understandable by end users and integrating ERMrest into a
RESTful web services architecture.

SQLShare [20] is a system that has many elements in com-
mon with ERMrest catalog including the concepts of schema
evolution and incremental refinement. However, SQLShare

differs from our work in several significant ways. It focuses
on SQL as the primary interface by which users interact and
assumes that the data of interest is primarily stored in the
SQLShare database. As a data-analysis platform, SQLShare
treats data and derivations as a directed graph of diverging
data sets, while ERMrest focuses on a convergent store for
collaboratively-maintained, largely isochronous metadata. In
essence, SQLShare manages a set of individual tabular data
sets submitted either as data or as derivation queries, while
ERMrest provides RESTful interfaces to incrementally manage
a mutable store by modifying data content or adjusting its
entity-relationship model.

More closely related is HTSQL [21] which also maps
a relational query space to URLs, but focuses on query
language rather than data-management service interfaces. Both
systems offer a form of chained navigation with filters or
other entity-selection notation to retrieve relational data. HT-
SQL provides a query language meant for humans, including
conventional whitespace and punctuation-based tokenization
with rich projection and aggregation syntax, attempting to
compete with or replace SQL. By contrast, ERMrest offers
queries meant for web client machinery, with tokenization rules
closely aligned to URL encoding standards with navigation
and filters as elements in a hierarchical URL path notation.
ERMrest focuses on simpler classes of query relevant to
implementing web-based data browsers and condition-action
agents. Unlike ERMrest, HTSQL does not provide support
for model introspection, model evolution, content update, nor
differentiated access control, where individual rows may be
visible to some clients but not others.

VII. CONCLUSION

We have summarized key design objectives and challenges
faced in many scientific data management and collabora-
tion problems, and we have introduced ERMrest, a web-
based metadata catalog addressing these problems. We have
presented ERMrest goals, design, and implementation, and
described its ecosystem of client tools and companion services.

We described two applications which have benefited from
adoption of ERMrest. The GPCR Consortium is a complex,
internationally distributed collaboration with many active data-
producers and consumers, already having a mature set of ex-
perimental processes but a mixture of different local laboratory
data environments. The Mapping the Dynamic Synaptome
project is an early-phase, multidisciplinary research project
where the core science methodology is still being invented, and
no existing experiment management process was known. Each
project has successfully used ERMrest and its ecosystem of
tools to configure a project-specific data-sharing environment
which has accelerated their scientific work.

We have also described several possible areas for future
work in ERMrest, including: web-based management for fine-
grained access control policies within the ERM; web-based
management of named views and asynchronous query re-
sources; and refinement of the data access model to provide
more compliant PATCH interfaces or other more RESTful
renderings of tabular data mutation. ERMrest and ERMrest-
based tools are open-source and are publically available on
github (github.com/informatics-isi-edu/ermrest).

ACKNOWLEDGMENT

The authors would like to thank Serban Voinea for his
contributions to ERMrest and IOBox development and Anoop
Kumar and Alejendro Bugacov for their work on the GPCR
project. We would also like to acknowledge our GPCR collabo-
rators Mike Hanson, Jeff Sui, and Raymond Stevens. The work
presented in this paper was funded by the National Institutes
of Health under awards 5U54EB020406, 1R01MH107238-
01, 5U01DE024449 and 1U01DK107350 and by the GPCR
Consortium.

REFERENCES

[1] G. Bell, T. Hey, and A. Szalay, “Beyond the data deluge,” Science, vol.
323, pp. 1297–1298, 2009.

[2] S. Kandel et al., “Enterprise data analysis and visualization: An
interview study,” IEEE Transactions on Visualization and Computer
Graphics, vol. 18, no. 12, pp. 2917–2926, 2012.

[3] C. G. Begley, “Six red flags for suspect work.” Nature, vol. 497, no.
7450, pp. 433–4, may 2013.

[4] C. L. Borgman, “The conundrum of sharing research data,” Journal of
the American Society for Information Science and Technology, vol. 63,
no. 6, pp. 1059–1078, 2012.

[5] R. Schuler, C. Kesselman, and K. Czjakowski, “Accelerating data-driven
discovery with scientific asset management,” in IEEE 12th International
Conference on eScience. IEEE, 2016.

[6] ——, “Data centric discovery with a data-oriented architecture,” in 2015
Workshop on the Science of Cyberinfrastructure, 2015.

[7] R. T. Fielding and R. N. Taylor, “Principled design of the modern web
architecture,” ACM Transactions on Internet Technology (TOIT), vol. 2,
no. 2, pp. 115–150, 2002.

[8] C. L. Borgman et al., “Data management in the long tail: Science, soft-
ware, and service,” International Journal of Digital Curation, vol. 11,
no. 1, pp. 128–149, 2002.

[9] T. Berners-Lee, R. Fielding, and L. Masinter, “RFC 3986,” Uniform
Resource Identifier (URI): Generic Syntax, 2005.

[10] T. Kindberg and S. Hawke, “The ’tag’ URI Scheme,” RFC 4151
(Informational), Internet Engineering Task Force, Oct. 2005. [Online].
Available: http://www.ietf.org/rfc/rfc4151.txt

[11] S. Leonard, “Guidance on markdown: Design philosophies, stability
strategies, and select registrations,” Tech. Rep., 2016.

[12] M. Smith et al., “Dspace: An open source dynamic digital repository,”
Tech. Rep., 2003.

[13] K. Chard et al., “Globus data publication as a service: Lowering barriers
to reproducible science,” in e-Science (e-Science), 2015 IEEE 11th
International Conference on. IEEE, 2015, pp. 401–410.

[14] A. Rajasekar et al., “iRODS primer: integrated rule-oriented data
system,” Synthesis Lectures on Information Concepts, Retrieval, and
Services, vol. 2, no. 1, pp. 1–143, 2010.

[15] B. Koblitz, N. Santos, and V. Pose, “The AMGA metadata service,”
Journal of Grid Computing, vol. 6, no. 1, pp. 61–76, 2008.

[16] M. Antonioletti et al., “The design and implementation of grid database
services in ogsa-dai,” Concurrency and Computation: Practice and
Experience, vol. 17, no. 2-4, pp. 357–376, 2005.

[17] E. Deelman et al., “Grid-based metadata services,” in Scientific and Sta-
tistical Database Management, 2004. Proceedings. 16th International
Conference on. IEEE, 2004, pp. 393–402.

[18] R. Tuchinda et al., “Artemis: Integrating scientific data on the grid,” in
AAAI, 2004, pp. 892–899.

[19] X. Wang et al., “Semantic enabled metadata management in petashare,”
International Journal of Grid and Utility Computing, vol. 1, no. 4, pp.
275–286, 2009.

[20] B. Howe et al., “Database-as-a-service for long-tail science,” in Interna-
tional Conference on Scientific and Statistical Database Management.
Springer, 2011, pp. 480–489.

[21] (2012) HTSQL web site. [Online]. Available: http://www.htsql.org

http://www.ietf.org/rfc/rfc4151.txt
http://www.htsql.org

	I Introduction
	II Application Characteristics and Challenges
	II-1 Heterogeneous metadata
	II-2 Evolving data models
	II-3 Heterogeneous data source integration
	II-4 Data processing pipeline integration
	II-5 Data discovery, access, and consumption
	II-6 Differentiated access control

	III ERMrest
	III-A Technical Goals and Scoping
	III-A1 Meaningful URLs
	III-A2 Collaborative Data Architecture
	III-A3 Long-tail Scalability
	III-A4 Full Lifecycle Support
	III-A5 Data Portability

	III-B HTTP Interface and Semantics
	III-B1 Catalog Management
	III-B2 ERM Management
	III-B3 ERM Annotations
	III-B4 Catalog Content
	III-B5 Navigation and URL Structure
	III-B6 Filter Predicates
	III-B7 Structural Search
	III-B8 Projection and Aggregation
	III-B9 Mutation not Quite RESTful

	III-C Relational Data Mappings
	III-C1 entity
	III-C2 attribute
	III-C3 attributegroup
	III-C4 aggregate

	III-D Data Retrieval Examples
	III-E Concurrency, Transaction, and Update Model
	III-F Implementation
	III-F1 Access Control
	III-F2 Catalog Scalability
	III-F3 SQL Catalog Customization
	III-F4 Exposing SQL Views

	IV ERMrest Ecosystem
	IV-A Hatrac: Object Store
	IV-B Chaise: Model-Driven GUI
	IV-C IOBox: Automated Agents
	IV-D Condition-Action Processing

	V Applications
	V-A GPCR Consortium
	V-B Mapping the Dynamic Synaptome

	VI Related Work
	VII Conclusion
	References

