
I’ll Take That to Go: Big Data Bags and Minimal Identifiers
for Exchange of Large, Complex Datasets

Kyle Chard†, Mike D’Arcy∗, Eric W. Deutsch‡, Ian Foster†,
Carole Goble§, Ben Heavner‡, Carl Kesselman∗, Ravi Madduri†, Stian Soiland-Reyes§

†Computation Institute, The University of Chicago, Chicago IL, USA
∗Information Sciences Institute, University of Southern California, Marina del Rey CA, USA

‡Institute for Systems Biology, Seattle, WA, USA
§School of Computer Science, The University of Manchester, Manchester, UK

Abstract—Big data workflows often require the assembly and
exchange of complex, multi-element datasets. For example, in
biomedical applications, the input to an analytic pipeline can be
a dataset consisting thousands of images and genome sequences
assembled from diverse repositories, requiring a description
of the contents of the dataset in a concise and unambiguous
form. Typical approaches to creating datasets for big data
workflows assume that all data reside in a single location,
requiring costly data marshaling and permitting errors of
omission and commission because dataset members are not
explicitly specified. We address these issues by proposing simple
methods and tools for assembling, sharing, and analyzing
large and complex datasets that scientists can easily integrate
into their daily workflows. These tools combine a simple
and robust method for describing data collections (BDBags),
data descriptions (Research Objects), and simple persistent
identifiers (Minids) to create a powerful ecosystem of tools and
services for big data analysis and sharing. We present these
tools and use biomedical case studies to illustrate their use for
the rapid assembly, sharing, and analysis of large datasets.

I. INTRODUCTION

Many domains of science must frequently manage, share,
and analyze complex, large data collections—what we call
datasets in this paper—that comprise many, often large, files
of different types. Biomedical applications are a case in
point [1]. For example, an imaging genetics study may en-
compass thousands of high-resolution 3D images, terabytes
in size; whole genome sequences, each tens of gigabytes in
size; and other heterogeneous clinical data.

Data management and analysis tools typically assume
that the data are assembled in one location. However, this
assumption is often not well founded in the case of big
data. Due to their size, complexity and diverse methods
of production, files in a dataset may be distributed across
multiple storage systems: for example, multiple imaging and
genomics repositories. As a result, apparently routine data
manipulation workflows become rife with mundane com-
plexities as researchers struggle to assemble large, complex
datasets; position data for access to analytic tools; document
and disseminate large output datasets; and track the inputs
and outputs to analyses for purpose of reproducibility [2].

Researchers thus need robust mechanisms for describing,
referring to, and exchanging large and complex datasets.
However, while sophisticated conventions have been defined
for encoding data and associated metadata, and persistent
identifier schemes developed that can bind rich sets of
metadata to carefully curated data, all impose significant
overheads on the researcher and thus are often not used
in practice. We address this shortcoming here by proposing
simple yet powerful mechanisms for specifying, sharing, and
managing complex, distributed, large datasets.

This paper makes three principal contributions. First, we
define new methods, based on the integration of existing and
new mechanisms, for organizing, naming, and describing
big datasets for purposes of exchange. Second, we describe
efficient implementations of these methods, based on a mix
of online services and simple downloadable code. Third, we
demonstrate via a range of applications that these methods
simplify complex research processes and encourage repro-
ducible research.

The rest of this paper is as follows. In §II, we present
motivation and requirements. We next describe our approach
to defining (§III), describing (§IV), and robustly identifying
(§V) complex distributed big datasets. In §VI we present
tools to support researcher workflows and applications.
In §VII we describe the application of our ecosystem to
biomedical big data problems. Finally, in §VIII and §IX,
we review related work and present our conclusions.

II. TECHNICAL APPROACH

We identify six requirements for tools to support the
creation and exchange of complex, big, data collections
(datasets) made up of many directories and files (elements).
1. Enumeration: The dataset’s elements must be explicitly

enumerated, so that subsequent additions or deletions can
be detected. Thus we cannot, for example, simply define
a dataset as “the contents of directory D.”

2. Fixity: Scientific repeatability requires a robust way of
verifying that we have the intended versions of dataset
contents, so that data consumers can detect errors in data
transmission or modifications to data elements.



3. Description: We need interoperable methods for tracking
the attributes (metadata) and origins (provenance) of
dataset contents.

4. Identification: We require a reliable and concise way
of referring to datasets for purposes of collaboration,
publication, and citation.

5. Distribution: A dataset is able to contain elements from
more than one location.

6. Simplicity: Methods should not impose significant user
overhead or require that complex software be deployed
on researcher computers.

Requirements 1–3 address the need to make the dataset
a basic building block for scientific repeatability. Enumer-
ation and Fixity ensure that a dataset has exactly the data
elements intended by the creator, and that each data element
has not been modified from the time the dataset was created.
Description facilitates use of a dataset by a consumer,
whether a collaborator or analysis program. Identification
and Distribution streamline the creation, exchange, and
discovery of datasets by reducing the work required to create
a dataset, and allowing dataset exchange via the simple
transfer of a concise, well-defined, and invariant dataset
name. Simplicity is directed towards usability. If creation
of big datasets is significantly more complex than the status
quo of directories of files, then they will not be used.
Solutions that meet these requirements facilitate broad goals
of scientific repeatability and data reuse, by making data
findable, accessible, interoperable, and reusable (FAIR) [3].

To meet these requirements we have developed a solution
that has three main components:

• The BDBag: A mechanism for defining a dataset and
its contents by enumerating its elements, regardless of
their location (enumeration, fixity and distribution)

• The Research Object (RO): A means for characterizing
a dataset and its contents with arbitrary levels of detail,
regardless of their location (description);

• The Minid: A method for uniquely identifying a dataset
and, if desired, its constituent elements, regardless of
their location (identify, fixity)

A BDBag specifies the exact contents of a dataset, while
ROs describe those contents for purposes of reuse. The
dataset or any file within the dataset is unambiguously
named by a persistent, actionable identifier: the Minid. By
using lightweight approaches we have rapidly assembled the
all important ecosystem of tools for exchanging, creating,
and consuming datasets created using these methods for
defining, naming, and describing them.

We next describe the BDBag, RO, and Minid in turn.

III. BDBAGS: REPRESENTING DISTRIBUTED DATASETS

We first consider how to unambiguously specify the data
elements that make up a dataset. We assume that these data
elements are all represented as files: named sequences of

digital data. We make no assumptions about the coding of
file contents: If a user wishes to include structured data such
as a database in a dataset, the data must first be exported
in some file format, such as a database dump or comma
separated value (CSV) file.

We require a dataset representation that allow a dataset’s
contents to be distributed over multiple locations, as in
the case of a biomedical research dataset that encompasses
patient data from several repositories. To minimize the
overheads associated with using a dataset, we require further
that it be possible to validate and access a dataset’s contents
and to interpret some minimal metadata, all without access
to tools other than those available in a standard operating
system deployment. This latter requirement argues against
binary representations.

Existing formats for encoding complex data, such as HDF
and NetCDF, require complex tooling to consume. They also
require significant up front design to specialize the container
formats to a specific use case or domain. Archive formats,
such as ZIP, TAR, and variants, are commonly used for
smaller datasets. These formats use a simple hierarchical
naming model (i.e., directory structure) to organize data
elements. The tooling to create and unpack such archives
is ubiquitous, and unpacking creates a file system repre-
sentation of the archive that can be manipulated and ex-
amined without additional software. However, these archive
formats do not define mechanisms for determining whether
an intended element is missing or if the content has been
modified. Nor do they provide mechanisms for referencing
distributed elements: all data to be included in the dataset
must be assembled in one place.

These requirements led us to define the BDBag specifica-
tion for describing large, distributed datasets. We next review
the BagIt specification that BDBag extends and introduce the
BDBag extensions.

A. The BagIt specification

The BagIt specification [4], originally developed in the
digital library community, implements the “enclose and de-
posit” (also “bag it and tag it”: hence BagIt) approach [5] to
data aggregation and description. The specification requires
that a bag comprise a collection of data files plus a file
manifest. To enable validation of the dataset’s completeness
and correctness, the manifest must provide a checksum for
each file. The specification also defines the notion of a
partial bag, a bag in which the contents of some files listed
in the manifest are omitted from the bag contents, but are
instead specified by a reference to a location from which the
content may be retrieved.

The BagIt specification defines a directory structure and
required and optional files within that structure, as well as a
set of methods to serialize the directory into an established
archive format, such as ZIP. As shown in Figure 1, data
files in a bag are located in a payload directory named



data, within which files may be hierarchically organized
using subdirectories. In order to make the contents of the
bag explicit, a manifest file must be provided that lists the
files in the payload data directory along with a checksum
for each file. Alternative checksum algorithms can be used,
with the algorithm indicated in the manifest file name,
e.g., manifest-md5.txt or manifest-sha256.txt. The
manifest file must appear at the same level in the directory
as the data directory. This information means that software
need simply to examine the manifest file to detect acciden-
tally removed or corrupted files.

A bag must also contain a file bagit.txt with contents
specifying the BagIt specification version number and the
character encoding used for any tag files. It may also
include one or more tag files containing metadata describing
payload elements. One important tag file, fetch.txt must
be included if any files listed in the manifest are not in the
payload directory. If files are missing, this file then contains
a line of the form (URL, LENGTH, FILENAME) for each
missing file to indicate its name and a URL from which it
may be obtained. (The URL can indicate the protocol to be
used: e.g., HTTP or GridFTP). Once retrieved, the file can
be placed in the appropriate location in the data directory,
and its checksum validated from the manifest file.

Finally, a bag must contain a tag manifest file,
tag-md5.txt and/or tag-sha256.txt, enumerating the
name and checksum of bagit.txt and any tag files. This
information allows software to validate that these files are
present and correct.

B. The BDBag BagIt Profile

The BagIt specification allows for the definition of bag
profiles to address the needs of specific use cases by
imposing a set of conventions using various optional as-
pects of the BagIt specification. A BagIt profile is in-
stantiated as an optional element of the bag-info.txt

metadata file, which is referenced by a single field named
BagIt-Profile-Identifier, and whose value is an
HTTP URI referring to a JSON formatted file that describes
the constraints to impose on the bag structure.

The BDBag BagIt profile uses this profiling mechanism
to address certain limitations that we encountered when
using BagIt to deal with big data. Importantly, our use of
a profile to define our additional requirements means that
every BDBag is also a bag.

Figure 1 shows an example of a BDBag, highlighting the
bag elements that are specific or specialized to the BDBag
BagIt profile specification. To enable rapid evaluation of
a bag’s completeness (but not necessarily its validity) by
bag processing tools, the BDBag BagIt profile requires a
Payload-0xum field in bag-info.txt to document the
number of bytes and files in the payload, as defined in the
BagIt specification [4].

examplebag/ Top level name
bag-info.txt Metadata for the bag
bagit.txt BagIt version, encoding info
data/ The BDBag’s contents:
mydirectory/ User directory
file1 A first user file
file2 A second user file

fetch.txt How to fetch missing elements
manifest-md5.txt MD5 checksums for data files
manifest-sha256.txt SHA checksums for data files
metadata/ Tag directory for RO metadata
manifest.json RO metadata as JSON-LD

tagmanifest-md5.txt MD5 checksum for tags
tagmanifest-sha256.txt SHA checksum for tags

Figure 1: An example BDBag. Elements added or specialized for
BDBag are in boldface

To enable description of BDBag contents, the BDBag
BagIt profile requires a RO manifest (see §IV) as a tagfile at
the bag-root relative path metadata/manifest.json. The
contents of this manifest are defined by a second BDBag RO
profile, described in §IV.

To enable the computation of an overall checksum for a
BDBag for use in conjunction with Minid generation, the
BDBag BagIt profile requires that each BDBag be serialized
in ZIP, TAR+GZIP, or plain TAR format. This overall
checksum is required so that a Minid can be generated for
a bag with the assurance that the given bag data is what the
creator intended.

To provide redundancy and flexibility in checksums, the
BDBag BagIt profile requires that both MD5 and SHA256
checksum and checksum tag manifests be present, and
requires that for any given file in the bag’s payload directory
there must be an MD5 and/or SHA256 checksum. (While
MD5 is more widely used in implementations, it is less
robust than SHA256 and collisions are possible.)

C. BDBags and Policy

One obvious benefit of the fetch.txt mechanism sup-
ports the exchange of a big dataset without copying large
amounts of data. A second benefit is that it allows the defi-
nition of data collections for which specific individuals may
not have immediate permission to access, as for example
in biomedical applications in which certain access to data
elements may be restricted by data use agreements.

In some situations, the data may not be accessible via stan-
dard URL access protocols. In this situation, the fetch.txt
mechanism can be used to identify where to find the data, but
not how to get it. For this purpose, we use a tag scheme
URL [6]. Presented with a fetch file with tag URLs, the
user can use an out of band mechanism to retrieve the data,
position it in the payload directory, and then validate that
the correct information is in the bag.



IV. RESEARCH OBJECTS: DESCRIBING A BDBAG

The BagIt specification and the BDBag BagIt profile
provide a framework for enumerating the files that make
up a potentially large and distributed dataset, in a way that
allows a recipient of a BDBag to validate its contents. We
also want to allow users to associate descriptive metadata
with those files, and for that purpose we turn to the Research
Object (RO) [7] framework.

The RO framework was developed to provide a model and
mechanism for aggregating a set of digital resources that
are viewed as constituting a unit of research: for example,
the datasets, analysis scripts, and derived results associated
with a research paper. To this end, an RO aggregates (a)
these resources, (b) associated attribution and provenance
information, and (c) structured and unstructured annotations
describing the individual resources, their relations, and as-
sociations with external identifiers. These digital compo-
nents can then be bundled into off-the-shelf containers as
supported by platforms such as ZIP, BagIt, and Docker.
ROs are designed to promote reproducibility [8] by enabling
portability and structured rich semantic descriptions.

We adapt the RO model for BDBag by defining a BDBag
RO profile [9], which builds on the RO Bundle speci-
fication [10], but using BagIt-compatible paths: e.g., the
data directory contains the dataset (after fetching), while
the metadata directory contains annotations and the RO
manifest.json in JSON-LD format.

The manifest file lists the name, media type, and semantic
type of each bag resource. It can also provide per-resource
attribution, provenance, and annotations. For attribution, it
uses ORCID to identify people. For provenance, it uses
W3C PROV-O to describe the structured history trace of
generated files. Annotations are provided in separate files,
which may be unstructured (e.g., text file), semi-structured
(e.g., tabular spreadsheet), or structured (e.g., linked data
using vocabularies and ontologies).

Listing 1 presents an example of a structured annota-
tion file represented in JSON-LD. This file describes the
numbers.csv file stored in the BDBag payload using the
Dublin Core ontology. The annotation file is stored in the
metadata directory of the BDBag and does not need to
carry the same name as the reference file (the name of the
referenced file is encoded in the @id attribute). In this case,
the annotation file describes the type, title and description
of the numbers.csv file. Other types of annotation files,
including those that represent provenance information, can
also be added to the metadata directory.

Our adoption of RO notation also permits the representa-
tion of more complex inter-element relationships than the
basic hierarchical naming. supported by the BagIt spec-
ification. For backward compatibility with existing tools,
hierarchical naming gives us a simple way of organizing
things that is consistent with functionality provided by file

Listing 1: RO annotations in JSON-LD (abbreviated)

{
"@context": {
"@vocab": "http://purl.org/dc/terms/",
"dcmi": "http://purl.org/dc/dcmitype/Dataset"
},
"@id": "../../data/numbers.csv",
"@type": "dcmi:Dataset",
"title": "CSV files of beverage consumption",
"description": "A CSV file listing the number of

cups consumed per person."
}

systems and existing ZIP management tools. However, for
more sophisticated use, we can have more complicated (i.e.,
graph) relationships that are expressed using JSON-LD in
the standard metadata that we include for RO descriptions.

V. MINIMAL IDENTIFIERS: FIXITY AND SIMPLICITY

Having created a bag, we face the problem of how to
share it with data consumers. Even a partial bag may
be too large to conveniently copy via methods such as
email. We could place the BDBag on some shared storage
service and share a URL, but such unregimented user-
assigned names can easily become unmanageable. We can
encourage users to follow naming conventions, but without
support to enforce uniqueness, immutability, availability, and
resolvability, errors easily occur. Moreover, complications
are exacerbated when the data themselves are shared or
modified, as there is no method to link data contents with a
name. We require a robust and convenient naming scheme
that can easily assign unique identifiers to any data. With
such names, researchers can uniquely reference and locate
data, and share and exchange names (rather than the entire
contents of a dataset) while being able to ensure that the
contents (or version) of a dataset is unchanged.

Referring to BDBags via a permanent identifier rather
than via an arbitrary URL can go a long way toward
addressing these problems. A permanent identifier is a layer
of indirection which provides a unique stable reference to
data which may be located in multiple locations and to
which we can bind specific descriptive metadata elements
such as the author and creation date. Typically, the use of
identifiers, such as a DOI for DataCite, is limited to signif-
icant publication events, as creating the identifier requires
stepping outside of ones normal data analysis workflow. We
anticipate that BDBags will be created at many points during
a big data analysis process, and thus we want to minimize
cost and overhead associated with creating an identifier. In
summary, we would like to be able to provide names for
digital objects that are unambiguous (given an object’s name,
I can be sure that its content is exactly that provided by its
creator); actionable (given a name, I can discover essential
characteristics of the associated object and potentially access



Digital	
object

(1)	Create

minid
service

(2)	Identify

minid

provenance:	g	=	f(												)
audit-log:	[												]
registry:	<gene-X,												>

(3)	Store,	
share
minid

ID	
resolver

(4)Resolve	 (												)

(5)	Retrieve	
metadata

(6)	Access	
data	

minid

minid
minid

minid

Figure 2: A Minid use case. See text for details

its contents); disposable (names are so easy and cheap to
create that they can be created without thinking); resolvable
(information about the name can always be obtained even
if the data that it references is temporarily or permanently
unreachable); and persistent (once minted, the name will
persist for eternity and the attributes associated with that
name, such as its creator, cannot be changed).

To support these needs we define a minimal viable identi-
fier (Minid). As the name suggests, Minids are lightweight
identifiers that can be easily created, resolved, and used.
Minids are built upon Archival Resource Keys (ARKs) and
take the form ark:/57799/[suffix], where the shoulder
(57799) is used for all Minids, and the suffix is a unique
sequence of characters. Minids can be resolved using in-
dependent resolution services (e.g., name to thing). Minids
resolve to a landing page that is designed to be always
available, even if the data is not. The landing page includes
a small number of metadata and references to locations of
the referenced data. Rather than prescribe many required
metadata (as in many publication systems), Minids require
only what the data is, when it was created, and who created
it. In order to ensure fixity, we also provide a cryptographic
hash (checksum) of the contents of the object.

Figure 2 illustrates the use of Minids. A researcher images
a biological sample and immediately associates a Minid
with each image file, including the file’s checksum and
location. Using the Minid, she records notes in her electronic
lab notebook that describe observations on each image.
Having observed unusual results, the researcher sends the
relevant Minids to a collaborator, who can then resolve them,
using the name-to-thing (https://n2t.net) resolver. The
collaborator can then download the files referenced by the
Minid, verify that the files have not been changed, and refer
to them in subsequent work and publications.

A. The Minid Service

The Minid architecture is centered around a hosted Minid
service. The service provides a web-accessible location to
create, manage, and resolve Minids. It offers a web interface
for viewing landing pages, a REST API for programmat-
ically creating and retrieving Minids, and a lightweight
Python command line client for integrating Minids in re-
searchers’ working environments.

Minids are built upon ARKs, a general purpose identifier
that support arbitrary information objects. Minids extend

ARKs by defining an interface for creating, managing, and
accessing them; a metadata model for describing data; and a
lifecycle model that includes support for marking Minids as
obsolete and no longer supported. The Minid service uses
the EZID identifier service for minting ARKs.

We use a DataCite-based metadata schema to describe
pertinent attributes of the Minid: Creator (the creator of the
Minid, identified by name and/or ORCID); Created (the date
of creation); Title (a text title of the Minid); Locations (URI
locations for accessing the referenced data); and Checksum
(a checksum for the referenced data).

The Minid service implements a lightweight authentica-
tion model to make the service easy to use and reduce
technical burden on users. Users first register with the
service by specifying their name, email address, and optional
ORCID. The email address serves as a unique identity for
a user. Users are sent a random text code that they can use
in combination with their email address to use the service.

Minids implement a simple state model whereby a Minid
can either be active or tombstoned. A tombstoned Minid
represents data that are no longer available. A Minid may
also be obsoleted by another Minid.

When resolving a Minid via a resolution service (e.g.,
name to thing), users are redirected to a web-based landing
page: see Figure 3. The landing page presents the complete
metadata record for the Minid and links to one or more
locations where the referenced data can be obtained. It also
includes a QR code that encodes the Minid and can be
resolved using a QR code reader. The GET methods for the
landing page support HTTP content negotiation and results
may be returned in human-readable (HTML) or machine-
readable (JSON) form.

B. Minids and BDBags

Minids are designed to identify any data, thus they can
be applied to BDBags or used within BDBags to reference
external data. The BDBag specification supports a variety of
protocols for defining remote data elements to be included
in the BDBag (via the fetch.txt file). When Minids are
used as an identifier for an element, the BDBag tooling uses
a resolver to retrieve the Minid’s metadata and iteratively
download the data from the specified locations.

It is natural to use a Minid to identify a BDBag for
purposes of sharing, publication, and analysis. However,
the varying states of completeness supported by BDBags
are problematic for the checksum-based Minid architec-
ture. For example, a fully complete BDBag with all data
present in its data directory is semantically equivalent to
an empty BDBag with its remote dependencies specified in
the fetch.txt file, but these BDBags will have different
checksums. Thus, Minids include a secondary equivalence
hash so that data can be compared even if the physical bits
in different bags are not identical. In the case of BDBags,
an equivalence hash is constructed by taking a hash over

ark:/57799/[suffix]
https://n2t.net


Figure 3: A Minid landing page for a BDBag generated by the
ENCODE tool described in §VII-A

the bag-info, manifest, and tag-manifest files. Thus, the hash
encodes the bag metadata, the full payload of the bag defined
via the manifest, and the complete list of metadata files and
checksums included in the bag.

VI. TOOLS

To ease user interactions with BDBags and Minids we
have developed client tooling and libraries that support direct
usage within researchers’ workflows and integration with
external applications. Here we briefly describe these tools.

A. The bdbag Utility

This Python program combines code forks of the BagIt-
Python bag creation utility and the BagIt-Profiles-Validator
utility into a single software package that greatly simplifies
common tasks associated with creating, consuming, and
maintaining bags. The utility provides an Application Pro-
gramming Interface (API) that developers can call directly
from their own Python programs, and an end-user command
line interface (CLI) built on the API.

Other bdbag features are unique to the concept of a
BDBag. It supports fetch.txt-based file retrieval from
HTTP and Globus endpoints and resolution of Minids. Thus,
a BDBag creator can fully leverage the Fixity of the data
referenced by a Minid when including that data as part of a
bag payload. We list other bdbag features in the following.

Update-in-place for existing bags. Many BagIt tools, in-
cluding the Library of Congress reference implementation,
BagIt-Python, do not provide a convenient mechanism for
adding, removing, or changing a bag’s content. The bdbag

utility’s smart update function automatically detects if a
BDBag update would require regenerating checksums in all

manifests (a potentially lengthy process with large files) or
only tag file manifests.

Automatic archiving, extraction, and validation. Most bag
tools require that bag archiving, extraction, and validation
each be performed as separate steps. Built-in support for
these tasks mean that common task combinations such as
bag creation and archiving or bag extraction and validation
can be performed as a single command. For example, the
consumer of a BDBag can validate its profile, extract its
contents (from a ZIP, TAR, or TGZ archive), resolve any
remote file references, and validate the assembled BDBag
all in a single command invocation.

Automatic generation of remote file manifest entries and
fetch.txt via configuration file. Most bag tools have only
weak programmatic support for the generation of remote
file references. Generally, the bag creator must manually
enter remote files in a relevant manifest while also creating
a fetch.txt file and ensuring that the remote files listed
in each manifest have corresponding lines in fetch.txt.
During a bag update, if any remote files are added or
removed the user must manually update both manifests and
fetch.txt with the changes, which can be error-prone. The
bdbag utility allows the BDBag creator to specify all re-
quired information in a single JSON-formatted configuration
file and maintains coherency of all bag manifests and remote
references in fetch.txt on behalf of the user.

Automatic file retrieval based on a bag’s fetch.txt file,
with multiple protocol support. Few BagIt tools support the
fetching of files listed in a bag’s fetch.txt. The bdbag

utility provides an extensible mechanism for handling file
fetching using multiple protocols.

Creation of bags with BDBag BagIt/RO profile compati-
bility. The bdbag utility supports the use of RO manifests,
and provides an API for the creation of RO metadata and a
bag profile that specifies the inclusion of such metadata.

The bdbag CLI and API are designed for ease-of-use and
intended to operate on either BDBag directories or single file
BDBag archives. It is context-driven, meaning that different
functions are available based on the input BDBag path. For
example, if the input path argument represents a path to
a directory that is not already a BDBag, the software will
create a BDBag around the contents of that directory using
what is referred to as the bag-in-place mechanism. Bag-in-
place simply moves all files present in the input directory to
a temporary directory; creates the BDBag payload directory
(i.e., ./data); moves the original files from the temporary
directory into the newly created payload directory; and
finally generates all payload checksums and bag manifests
and places them in the root of the original input directory.
A user may optionally specify arguments that results in the
automatic serialization (archiving) of the bag to one of the
supported formats immediately following bag-in-place.

If the input path argument represents a path to a directory
that is already a BDBag, a variety of functions are available.



A user may update an existing BDBag (e.g., add/remove/-
modify payload files or bag metadata); resolve (download)
remote file references listed in fetch.txt; validate the
structure, integrity, and completeness of the BDBag; validate
the BDBag’s conformance to its profile (if any); or archive
the BDBag to a supported format. Lastly, if the input
path represents a serialized file representation of a BDBag,
the software will by default extract the BDBag contents.
However, it can also be used to validate the bag and/or bag
profile, in which case the bag is extracted to a temporary
directory that is removed after validation.

B. The minid Utility

The minid CLI and API enable integrated access to
the Minid service from the command line or within an
application. Once the command line client is installed, users
can configure it by creating a minid.cfg file with their email
address and code obtained from the registration workflow.
The CLI enables creation of a Minid, retrieval of a Minid
via checksum or Minid, or updating the state or location of
a Minid, all directly from the command line.

When creating a Minid the CLI allows users to specify
Minid metadata (e.g., title, location, and checksum) via com-
mand line arguments. Alternatively, the CLI can calculate
a checksum and derive a location from locally accessible
files. For example, the following call will create a Minid for
file.txt with title “Foo” and with the creator defined in
the configuration file, plus the file’s checksum.
minid --register --title ’Foo’ /path/file.txt

The CLI also supports the resolution of Minids. Given a
Minid, a user can look up the metadata (including location)
for the data that it references. Alternatively, users can look
up a Minid via a file’s checksum or equivalence hash via in-
dexes maintained by the service. This is valuable as it allows
users to discover Minids that might already be associated
with a given file. The minid CLI is a Python application
that can be installed on various operating systems.

C. Localizing Bag Contents using Globus

While BDBags make it easy to create a big dataset
description and Minids enable unambiguous reference to
large datasets, in many use cases it will be necessary
to consolidate all of the data into a single location for
subsequent analysis, processing, or archival. Standard BD-
Bag tooling provides basic functions for consolidating the
contents of a bag, however the default mechanism (HTTP) is
unreliable and performs poorly without specialized methods
to manage the download process. To address the needs of
high performance and reliable transfer of large amounts of
data both BDBag and Minid tooling use Globus [11].

We have integrated support for Globus in our Minid
and BDBag tools to support high-speed access to big
data. To support references to Globus accessible data
we have adopted a Globus URI representation for

inclusion in the location target of Minids or in the
fetch.txt files of a BDBag. For example, the URI
globus://6a84efa0-4a94-11e6-8233-22000b97daec/

path/file.txt refers to the file file.txt on Globus
endpoint 6a84efa0-4a94-11e6-8233-22000b97daec.
Minid and BDBag tooling is able to parse these references,
identify that they refer to data accessible via Globus, and
then use the Globus REST API to asynchronously transfer
the data to the user-specified location (either locally or to
another Globus-accessible location). For example, when
Globus URIs are included in a BDBag fetch.txt, the
BDBag tooling, when resolving the fetch file, will perform
Globus transfers to download each file.

VII. CASE STUDIES

We use three case studies to illustrate how our methods
and tools are being used.

A. ENCODE Case Study

The ENCODE (Encyclopedia of DNA Elements) Con-
sortium [12] is an international collaboration of research
groups funded by the National Human Genome Research
Institute (NHGRI). Its goal is to build a comprehensive
parts list of functional elements in the human genome. The
catalog includes genes (protein-coding and non-protein cod-
ing), transcribed regions, and regulatory elements, as well
as information about the tissues, cell types and conditions
where they are found to be active.

The ENCODE web portal allows researchers to perform
queries using various parameters such as assay, biosample,
and genomic annotations. A typical researcher workflow
involves searching for data on the ENCODE portal, down-
loading relevant datasets individually, keeping track of all
data that are downloaded, running various analyses on the
data, creating results, and eventually publishing conclusions.

While online access to ENCODE data is a great boon to
research, subsequent steps can become cumbersome. Each
data file URL returned by a query must be downloaded
individually, and data comes without associated metadata
or context. Researchers must manually save queries if they
wish to record data provenance. The provenance of inter-
mediate datasets and analysis results is often lost unless the
researcher diligently captures them. There is no way for a
researcher to validate that a copy of an ENCODE dataset has
not been corrupted, other than to download the data again.

We describe in the following how our tools can be used
to realize the end-to-end scenario shown in Figure 4.

1) ENCODE Data Access: We used BDBag, Minid, and
Globus tools to create a simple portal that allows the
researcher to access the results of an ENCODE query, plus
associated metadata and checksums, as a BDBag. Figure 5
shows this portal in action. The researcher enters an EN-
CODE query in REST format or uploads an ENCODE
metadata file that describes a collection of datasets. The



Alignment	
(STAR)

Adrenal

Brain
Analysis	
(F-Seq)

Analysis	
(Wellington)

Analysis	
(bedtools)

1.	Query	and	
discover	data

3.	Execute	DNase-seqanalysis	workflow

2.	Transfer	bags

Alignment	
FilesAlignment	

Files

4.	Publish	result		bags

http://bit.ly/xxxxxxx
http://bit.ly/xxxxxxx

BDDS	Collection5.	Discover	published	data

Alignment	
FilesAlignment	

Files

Other	
analysis Differential

Expression

6.	Execute	other
workflow

Figure 4: An end-to-end pipeline with ENCODE data: creating a
BDBag, running pipeline, publishing results, reusing results

ENCODE query

Minid for BDBag

Globus access

Figure 5: An ENCODE portal. The user has entered an ENCODE
query and clicked “Create BDBag.” The portal provides a Minid
for the BDBag and a Globus link for reliable, high-speed access

query shown in Figure 5 identifies data resulting from RNA-
Seq experiments on stem cells. (As of August 2016, the
result comprises 13 datasets with 144 FastQ, BAM, .bigWig,
and other files, totaling 655 GB of the 193 TB in ENCODE.)

The researcher can then select the “Create BDBag” button
to trigger the creation of a 100 KB BDBag, stored on
Amazon S3 storage, that encapsulates references to the files
in question, metadata associated with those files, and the
checksums required to validate the files and metadata.

As shown in Figure 5, the user is provided with a Minid for
the BDBag, ark:/57799/b9j01d. This identifier leads to a
landing page similar to that shown in Figure 3, from which
the user can download the BDBag. The BDBag is stored
in Amazon S3 and can therefore be permanently referenced
for purposes of sharing, reproducibility, or validation. The
BDBag materialization tool can then be used to fetch each
file from the URL provided in the fetch.txt file.

Given the Minid for a bag, a user may copy the bag
to a desired storage location and use the BDBag tools to
retrieve remote files from the ENCODE repository. The

default practice of making client-driven HTTP requests can
be time consuming and is subject to failures. For example,
we found that instantiating the 655 GB test bag of remote
ENCODE data via HTTP took 36 hours and two restarts.
The BDBag tools provides an effective alternative: if the
remote data is located on a Globus endpoint, reliable and
high performance Globus transfer methods can be used that
improve performance and automatically restart interrupted
transfers. Thus, for example, we were able to instantiate the
same BDBag from Petrel, a storage repository at Argonne
National Laboratory, to a computer at the University of
Chicago Research Computing Center in 8.5 minutes, and
from Amazon S3 to the same computer in 14 minutes. If
BDBag elements are referenced using Minids, the BDBag
tools have the option of preferring Globus URLs if they are
provided. The checksumming of bag contents ensures that
we have the correct data, regardless of source.

2) Analyzing ENCODE Data and Publishing Results:
Having enabled direct, programmatic access to ENCODE
query results plus associated metadata, we next want to
automate the analysis of such results. To this end, we use
the Galaxy [13]-based Globus Genomics [14] extended to
resolve a BDBag via a Minid, accept BDBags as input,
retrieve the referenced datasets, and run analytical pipelines
at scale on cloud resources: Steps 2 and 3 in Figure 4.

The analysis is performed on data from a molecular
biology technique called DNase I hypersensitive sites se-
quencing, or DNase-seq [15]. Such experiments generate a
large volume of data that must be processed by downstream
bioinformatics analysis. Currently available ENCODE data
for our analysis protocol comprise 3–18 GB of compressed
sequence. Depending on input sequence size, analysis can
require 3–12 CPU hours per sample on a AWS node with 32
CPU cores. The final output file is relatively small compared
to the input, but intermediate data is about 10 times the
input size. The resulting output for each individual patient
sample is encapsulated in a BDBag—containing a collection
of candidate DNA footprints. All individual samples from
the same cell line are merged and then filtered by intersecting
against a database for known transcription factor binding
sites in the reference genome. This analysis step takes one
CPU hour and produces 50–100GB of output, depending
on the cell type. The final BDBags are assigned a Minid.
We also publish these BDBags into the BDDS Publication
service (Step 4) [16], so that other researchers can discover
and access the results for other analyses (Steps 5 and 6).

B. PeptideAtlas Case Study

Another resource that uses BDBags and Minids for dis-
seminating data is the PeptideAtlas [17] proteomics data
repository. PeptideAtlas collects proteomics tandem mass
spectrometry (MS/MS) datasets from laboratories around the
world, either by direct submission or via the ProteomeX-
change Consortium [18], and reprocesses them with the ad-

ark:/57799/b9j01d


vanced software tools of the Trans-Proteomic Pipeline [19],
using the most recent reference proteome. All data products
generated by PeptideAtlas are made publicly available.

Many reference proteomes and other protein lists can be
used to process human proteomics MS/MS datasets, and it
can be difficult to determine which is most appropriate for
a given analysis. Thus, PeptideAtlas disseminates a Tiered
Human Integrated Search Proteome (THISP) set, refreshed
on the first of every month, at the PeptideAtlas web site via
BDBags and Minids (http://www.peptideatlas.org/
thisp) [20]. These monthly releases comprise a set of files
of different levels of complexity, with and without decoy
sequences for error calibration. Each release is bundled into
two separate BDBags with associated Minids using the tools
described herein; the first bundle is the primary proteome
files, and the second is all individual components that may
be used for custom applications.

In addition, PeptideAtlas makes all deposited and re-
processed datasets available to the community via its raw
data repository. For each dataset, this repository provides
the raw instrument files, the raw data converted to the
Proteomics Standards Initiative’s mzML [21] open standard
format, the reprocessing results, and the metadata describing
the experiment. The datasets have previously been made
available as individual files on the FTP server, but are
now bundled into BDBags with Minids to facilitate their
dissemination to the community.

C. PheWAS Case Study

Phenome Wide Association Studies (PheWAS) are a big
data analytics tool in which biomarkers are identified by
analyzing many phenotypes from many subjects with a
shared genetic trait, such as a common single nucleotide
polymorphism. In one application, we generated thousands
of phenotypes from neuroimaging data segmenting brain
images against many different brain atlases, and then for
each segmentation we computed many metrics, such as
volume, density, and curvature. The BDBag and Minid tools
are proving invaluable as we track, manage, and process the
tens of thousands of files produced by PheWAS analysis.

As noted above, BDBags allow us to assemble and com-
municate data that are constrained by data use agreements.
One initial dataset comprises 1028 files totaling 228 GB. A
data use agreement prohibits us from copying the data from
user to user: each user must go to the source repository to
download the data. However, we can create a 64 KB partial
bag in which every protected file is listed in the fetch.txt
file and referenced using a tag scheme URL that includes
the accession number of the file. A user receiving this bag
can then formulate a download request from the repository
by examining the contents of the manifest and fetch file.
Once retrieved data is placed into the data directory for
the bag, the BDBag tools can validate the contents to ensure
that the right data has been obtained.

VIII. RELATED WORK

Our approach is differentiated from other efforts by its
focus on developing an integrated suite of capabilities to
manage, describe, and name large and potentially distributed
data. We review efforts with similar goals and functionality
to each of the core components of our approach.

The problem of describing the layout of heterogeneous
datasets is addressed by formats such as the Hierarchical
Data Format (HDF) [22], which defines a self-describing
structure that allows many objects to be stored in a single
file, and the DFDL [23] and XDTM [24] specifications,
which use XML to describe the layout of data within a single
file and across multiple files, respectively. Such formats
are often used as a general base from which specialized
formats, such as NetCDF, can be represented using various
conventions. In general, such formats are complex, and
require sophisticated tooling to access and consume data.

Many metadata representations provide for the description
of scientific metadata. These models are typically devel-
oped by publication systems, aligned with different research
communities, associated with execution models, or used
for specific data types. Thus, they focus on individual
aspects of a dataset. In a more general sense, efforts such
as Open Archive Initiative’s Object Reuse and Exchange
(OAI-ORE) [25] provide a common model for standard-
izing representation of complex multi-object datasets and
associated metadata. However, OAI-ORE does not define
sufficiently detailed models for describing the relationship
and contribution of objects to one another or to resources
outside of the package.

A growing number of systems support the creation of per-
sistent identifiers for digital citation. General systems such as
DOIs, ARKs, and Handles [26] can be minted and associated
with arbitrary digital objects. Each, however, comes with
its own usage policies and management infrastructure. The
University of California’s EZID service provides a com-
mon API and management service for creating ARKs and
DOIs. DataCite [27] supports DOI creation and provides a
registry for discovering data based on registered metadata.
Commercial services such as Bitly and TinyURL provide
for the creation of short identifiers in place of long URLs.
However these services do not support multiple locations,
checksum integration, or updates to metadata. Identifiers.org
and the MIRIAM Registry aim to capture cross-references
via standard URIs [28], [29].

IX. CONCLUSIONS

The complexity of managing heterogeneous big datasets
is often ignored but has significant consequences in terms
of overheads, inefficiencies, and errors. We have introduced
simple yet powerful tools that can be readily integrated
into the daily workflow of scientists and into a wide range
of analytic programs and services. Working with domain
scientists, we have applied these tools in several applications.

http://www.peptideatlas.org/thisp
http://www.peptideatlas.org/thisp


Table I: How elements of our solution address requirements

BDBag RO Minid Globus Tools
Enumeration • ◦ ◦ ◦ ◦
Fixity • ◦ • • ◦
Description ◦ • ◦ ◦ ◦
Identification ◦ ◦ • ◦ ◦
Distribution • • ◦ • ◦
Simplicity ◦ ◦ • • •

The tools have been enthusiastically embraced by users.
We summarize in Table I how the various elements of
our solution address the six requirements of §II. Tools are
available at http://bd2k.ini.usc.edu/tools/.

ACKNOWLEDGMENTS

This work was supported in part by NIH contract
1U54EB020406-01, Big Data for Discovery Science Center [1];
DOE contract DE-AC02-06CH11357; and EC H2020-EINFRA-5-
2015 grant 675728. We thank Kristi Clark, Segun Jung, and Alex
Rodriguez for work on applications and Galaxy integration.

REFERENCES

[1] A. W. Toga et al., “Big biomedical data as the key resource
for discovery science,” Journal of the American Medical
Informatics Association, vol. 22, no. 6, pp. 1126–31, 2015.

[2] N. A. Vasilevsky et al., “On the reproducibility of science:
Unique identification of research resources in the biomedical
literature,” PeerJ, vol. 1, p. e148, 2013.

[3] M. D. Wilkinson et al., “The FAIR guiding principles for
scientific data management and stewardship,” Scientific Data,
vol. 3, p. 160018, mar 2016.

[4] J. Kunze et al., “The BagIt file packaging format (V0.97),”
Internet Engineering Task Force, Internet Draft (work in
progress), draft-kunze-bagit-11.txt, Tech. Rep., 2015.

[5] K. Tabata et al., “A collaboration model between archival sys-
tems to enhance the reliability of preservation by an enclose-
and-deposit method,” in 5th International Web Archiving
Workshop, Vienna, Austria, 2005.

[6] T. Kindberg and S. Hawke, “The ’tag’ URI Scheme,” RFC
4151 (Informational), Internet Engineering Task Force, Oct.
2005. [Online]. Available: http://www.ietf.org/rfc/rfc4151.txt

[7] S. Bechhofer et al., “Research Objects: Towards exchange and
reuse of digital knowledge,” in Workshop on The Future of the
Web for Collaborative Science, 2010, available from Nature
Precedings http://dx.doi.org/10.1038/npre.2010.4626.1.

[8] A. González-Beltrán et al., “From peer-reviewed to peer-
reproduced in scholarly publishing: The complementary roles
of data models and workflows in bioinformatics,” PLoS ONE,
vol. 10, no. 7, pp. 1–20, 07 2015.

[9] S. Soiland-Reyes, “Research Object BagIt archive,” re-
searchobject.org, https://w3id.org/ro/bagit. Visited July 1,
2016.

[10] S. Soiland-Reyes, M. Gamble, and R. Haines, “Research Ob-
ject Bundle 1.0,” Specification, researchobject.org, November
2014, https://w3id.org/bundle/2014-11-05/.

[11] I. Foster, “Globus Online: Accelerating and democratizing
science through cloud-based services,” IEEE Internet Com-
puting, vol. 15, no. 3, pp. 70–73, 2011.

[12] ENCODE Project Consortium et al., “The ENCODE (ENCy-
clopedia of DNA elements) project,” Science, vol. 306, no.
5696, pp. 636–640, 2004.

[13] E. Afgan et al., “The Galaxy platform for accessible, repro-
ducible and collaborative biomedical analyses: 2016 update,”
Nucleic Acids Research, vol. 44, no. W1, pp. W3–W10, 2016.

[14] R. K. Madduri et al., “Experiences building Globus Ge-
nomics: A next-generation sequencing analysis service using
Galaxy, Globus, and Amazon Web Services,” Concurrency
and Computation: Practice and Experience, vol. 26, no. 13,
pp. 2266–2279, 2014.

[15] L. Song and G. E. Crawford, “DNase-seq: a high-resolution
technique for mapping active gene regulatory elements across
the genome from mammalian cells,” Cold Spring Harbor
Protocols, vol. 2010, no. 2, pp. pdb–prot5384, 2010.

[16] K. Chard et al., “Globus data publication as a service: Low-
ering barriers to reproducible science,” in 11th International
Conference on e-Science. IEEE, 2015, pp. 401–410.

[17] E. W. Deutsch et al., “State of the human proteome in
2014/2015 as viewed through PeptideAtlas: Enhancing ac-
curacy and coverage through the AtlasProphet,” Journal of
Proteome Research, vol. 14, no. 9, pp. 3461–3473, 2015.

[18] J. A. Vizcaı́no et al., “ProteomeXchange provides globally
coordinated proteomics data submission and dissemination,”
Nature Biotechnology, vol. 32, no. 3, pp. 223–226, 2014.

[19] E. W. Deutsch et al., “Trans-Proteomic Pipeline, a standard-
ized data processing pipeline for large-scale reproducible pro-
teomics informatics,” PROTEOMICS-Clinical Applications,
vol. 9, no. 7-8, pp. 745–754, 2015.

[20] E. Deutsch et al., “Tiered human integrated sequence search
databases for shotgun proteomics,” Journal of Proteome Re-
search, 2016, submitted.

[21] L. Martens et al., “mzML–a community standard for
mass spectrometry data,” Molecular & Cellular Proteomics,
vol. 10, no. 1, pp. R110–000 133, 2011.

[22] The HDF Group. (1997–2016) Hierarchical Data Format,
version 5. http://www.hdfgroup.org/HDF5/.

[23] M. J. Beckerle and S. M. Hanson, “Data Format Description
Language (DFDL) v1.0 specification,” Open Grid Forum,
Tech. Rep. GFD-P-R.207, 2014.

[24] Y. Zhao et al., “A notation and system for expressing and
executing cleanly typed workflows on messy scientific data,”
ACM SIGMOD Record, vol. 34, no. 3, pp. 37–43, 2005.

[25] C. Lagoze et al., Open Archives Initiative Object Reuse and
Exchange, http://www.openarchives.org/ore/1.0/vocabulary.
Accessed August 1, 2016, Open Archives Initiative Std.,
October 2008.

[26] S. Sun, L. Lannom, and B. Boesch, “Handle system
overview,” Internet Engineering Task Force, Network
Working Group, RFC 3650, November 2003. [Online].
Available: https://www.ietf.org/rfc/rfc3650.txt

[27] J. Brase, “DataCite–A global registration agency for research
data,” in 4th International Conference on Cooperation and
Promotion of Information Resources in Science and Technol-
ogy. IEEE, 2009, pp. 257–261.

[28] C. Laibe and N. Le Novère, “MIRIAM resources: tools
to generate and resolve robust cross-references in systems
biology,” BMC Systems Biology, vol. 1, no. 1, p. 1, 2007.

[29] N. Juty, N. Le Novère, and C. Laibe, “Identifiers.org and
MIRIAM Registry: Community resources to provide persis-
tent identification,” Nucleic acids research, vol. 40, no. D1,
pp. D580–D586, 2012.

http://bd2k.ini.usc.edu/tools/
http://www.ietf.org/rfc/rfc4151.txt
http://dx.doi.org/10.1038/npre.2010.4626.1
https://w3id.org/ro/bagit
https://w3id.org/bundle/2014-11-05/
http://www.hdfgroup.org/HDF5/
http://www.openarchives.org/ore/1.0/vocabulary
https://www.ietf.org/rfc/rfc3650.txt

	Introduction
	Technical approach
	BDBags: Representing Distributed Datasets
	The BagIt specification
	The BDBag BagIt Profile
	BDBags and Policy

	Research Objects: Describing a BDBag
	Minimal Identifiers: Fixity and Simplicity
	The Minid Service
	Minids and BDBags

	Tools
	The bdbag Utility
	The minid Utility
	Localizing Bag Contents using Globus

	Case Studies
	ENCODE Case Study
	ENCODE Data Access
	Analyzing ENCODE Data and Publishing Results

	PeptideAtlas Case Study
	PheWAS Case Study

	Related work
	Conclusions
	References

