
Accelerating Data-Driven Discovery With Scientific Asset Management

Robert E. Schuler
schuler@isi.edu

Carl Kesselman
carl@isi.edu

Karl Czajkowski
karlcz@isi.edu

Information Sciences Institute
University of Southern California
Maria del Rey, CA 90292, USA

Abstract— Current approaches for scientific data manage-
ment have failed to keep pace with the needs of increasingly
data-intensive science. The overhead and burden of managing
data in complex discovery processes, involving experimental
protocols with numerous data-producing and computational
steps, has become the gating factor that determines the pace
of discovery. The lack of comprehensive systems to capture,
manage, organize and retrieve data throughout the discovery
life cycle leads to significant overheads on scientists time and
effort, reduced productivity, lack of reproducibility, and an
absence of data sharing.

In “creative fields” like digital photography and music, digi-
tal asset management (DAM) systems for capturing, managing,
curating and consuming digital assets like photos and audio
recordings, have fundamentally transformed how these data are
used. While asset management has not taken hold in eScience
applications, we believe that transformation similar to that
observed in the creative space could be achieved in scientific
domains if appropriate ecosystems of asset management tools
existed, tools to capture, manage, and curate data throughout
the scientific discovery process. We introduce a framework and
infrastructure for asset management in eScience and present
initial results from its usage in active research use cases.

I. INTRODUCTION

Scientific discovery is undergoing a profound transforma-
tion driven by high-throughput instruments, pervasive sensor
networks, large-scale computational analyses, growing de-
pendence on collaborations and virtual organizations, and a
changing scientific communications ecosystem that places
increased emphasis on data sharing. Discovery driven by
computational analysis and exploration of data has been
recognized as the fourth paradigms of scientific discovery
alongside empirical and theoretical methods of discovery,
leading us to a new era of Discovery Science, a methodology
of developing and testing hypotheses from large, rich, and
complex data where the initial observation may precede the
hypothesis [1].

Traditionally, a knowledge cycle in scientific discovery has
been regarded as the formation of new knowledge through
repeated turns of hypothesis, prediction, observation, and
analysis, which are punctuated by transmission of results
in the form of publications [2]. In the new paradigm of
discovery science, these knowledge turns are increasingly

The work presented in this paper was funded by the National Institutes of
Health under awards 5U54EB020406, 1R01MH107238-01, 5U01DE024449
and 1U01DK107350

dependent on a scientists ability to acquire, curate, integrate,
analyze, and share data well beyond the compact reports
offered by traditional publication. While the details of these
cycles vary from domain to domain, and indeed across time
within a single discovery process, data driven discovery
cycles share common characteristics and face similar data
related problems regardless of the domain. Experimental
protocols involve multiple steps with data capture from
diverse, high throughput, high fidelity instruments, analytic
pipelines or computational simulation models. The results of
one cycle of experiments are iteratively fed back into the
system to refine the next series of experiments. Data must
be contextualized within the protocol steps they are captured
and may be related to physical specimens and other details
of the experimental stage that produced the data. Data will
also be produced by computational and human analyses in
other steps of the protocol and also must be contextualized
and linked to related data.

As the complexity and volume of the data that are used to
drive knowledge turns in eScience applications increase, the
ability of the scientist to manage the logistics of executing
these cycles can become a rate limiting step. Current ap-
proaches to scientific data management have failed to keep
pace with the needs of increasingly data-intensive science.
Managing data is often done manually with “meaningful” file
names and directory hierarchies, locally coded spreadsheets,
and ad hoc laboratory notebooks. As noted by [3], “large
amounts of data are generated using a variety of innovative
technologies and the limiting step is accessing, searching and
integrating this data.” Scientists and other data analysts report
spending 50% or more of their time on data wrangling (lo-
cating, extracting, cleaning, formatting, organizing) tasks [4],
which leads to potential misinterpretation of results, misuse
of data, forgetting pertinent details to describe the data,
inability to find and retrieve previously captured data and
results, and other similar issues. Concerns over repeatability
of scientific results are growing along with an increase
in scientific retractions [5], and some reports indicate that
there is as little as 10% reproducibility of scientific results
which cite lack of data publication as one of the significant
factors [6]. As noted in [7], tools merely to support data
capture are “just dreadful” and “we lack good tools for
both data curation and data analysis.” These sentiments echo
similar observations made decades earlier by J. C. R. Lick-



lider in his seminal work on the man-computer symbiosis,
as he states, “...my choices of what to attempt and what
not to attempt were determined to an embarrassingly great
extent by considerations of clerical feasibility, not intellectual
capability [8].” Decades later, these same issues continue to
obstruct data-driven discovery.

While scientific data management has lagged behind the
needs of data-driven discovery, this is not the case in other
creative activities that also depend on managing large, com-
plex data sets. For many years, the prevailing method of
collecting digital pictures was to categorize images following
user-defined, ad hoc naming conventions, resulting in a rigid,
hierarchical, and often-confusing array of files and directo-
ries, much like scientific data is managed currently. Today,
photographers use em digital asset management (DAM) sys-
tems such as Apple Photos or Google Photos to automatically
discover and catalog digital images on their cameras or hard
disk drives; extract metadata from the imported media; add
user annotations; organize pictures into virtual collections
(i.e., photo albums); browse and search on metadata, an-
notations or features such as faces in the picture; export
data for manipulation by external photo editing tools; and
publish to cloud-based sharing or printing services. Scientific
data management by comparison has failed to address the
data wrangling tasks incumbent on the majority of scientists
today.

The ecosystem provided by DAMS streamlines the ac-
quisition, management and sharing of digital assets such
as pictures and music, and has had a transformative effect
on how we think about and use these data. We assert that
creating a digital asset management ecosystem for eScience
data could have a similar impact: to transform the way that
scientists interact with data, facilitate data-driven discovery
and radically hasten knowledge turns for scientific discovery.
An eScience DAMS ecosystem should provide the following
capabilities:

• Acquisition and characterization of diverse scientific
assets, including experimental data from instruments
(e.g. microscopes, sequencers, flow cytometers), outputs
from computational models, and results from analysis
pipelines. Data must flow freely and automatically from
the points of production into the management system,
much like pictures flow from a smartphone into a
management application.

• Model-driven organization and discovery of assets. Suc-
cessful DAMS systems in the consumer space provide
end users with intuitive and interactive ways of orga-
nizing and discovering assets that may be related via
a complex underlying model. For example, in music
DAMS systems, one may discover based on artist,
group, work, composer, instrumentation, genre, etc.
Similarly, an eScience DAMS should provide model
based organization and discovery, in spite of the fact that
the models may vary radically from domain to domain,
may cross domains (multi-disciplinary collaborations)
and vary over time as the discovery process unfolds.

• Storage and retrieval of eScience data assets. These

assets may be very large, and may be physically dis-
tributed in local, enterprise, and cloud based storage
systems.

• Aggregation and exchange of data collections. An
eScience DAMS should be viewed as the hub of a data
management ecosystem and not create unnecessary data
silos. Hence, it is critical that the DAMS allow users to
assemble and export data sets for consumption by other
tools and users.

• Rights management/access control. A core function of
DAMS is management of IP associated with assets. In
the eScience environment, this means enforcing data use
agreements, access to proprietary data, time driven data
embargoes, and different user roles within and across
collaborations.

This paper makes the following contributions:
1) We introduce the idea of asset management as a way

of addressing eScience data management challenges.
2) We present the requirements for asset management

systems based on analysis of eScience applications.
3) We propose a general architecture for scientific asset

management ecosystems.
4) Finally, we describe the first platform implementation

for scientific asset management.
In the following sections, we will address each DAMS

capability. We will then describe our proposed architecture
for scientific asset management and the implementation of
DERIVA, a platform for introducing DAMS functions into
eScience applications. We then share a preliminary evalu-
ation of the approach and its framework in the context of
science applications that use it regularly. Finally, we present
plans for future work and then offer our conclusions.

II. CHARACTERISTICS AND REQUIREMENTS FOR
SCIENTIFIC ASSET MANAGEMENT

Scientific discovery must be supported by an ecosystem of
services and tools – instruments, computational workflows
and analysis pipelines, domain repositories and data hubs.
In scientific discovery, as much or more than any other
discipline, the data are what is important and will outlast
the systems used to interact with the data. Here we describe
the characteristics and requirements for scientific asset man-
agement.

A. Acquisition and Characterization of Scientific Assets

We represent data driven discovery in terms of an evolving
set of scientific “digital assets” (i.e., research data or simply
assets), which are described and related to one another via a
domain model. The idea of an asset contextualized within a
domain model is similar to semantic models for describing
argument and evidence as “micropublications” [9] where
the continuous acquisition and characterization of assets
throughout the discovery process may be viewed as incre-
mental micropublications with each asset as an embodiment
of evidence on which scientific arguments may be grounded.

Diverse sources of assets. An asset may be generated
by sensors, instruments, or as the result of a computation.



Like photos on a smartphone, assets should be seamlessly
integrated into the asset management system. The production
of assets is itself fluid and cyclic throughout the discovery
process as new data are generated, analyzed, shared with
collaborators, and exported for publication. As new assets
are acquired, they may be immediately consumed by other
actors such as collaborators or computational workflows and
analysis pipelines.

Diverse forms of assets. Scientific assets come in different
forms, formats, and conceptually at different levels of granu-
larity. For example, a video recording can also be represented
more granularity as a time series of individual frames. In
some cases, therefore, it may be useful to reference the parts
versus the whole and conceptually to model the video as an
aggregation of frames.

Incremental refinement of assets. The framework must
allow incremental refinement of assets throughout the sci-
entific discovery process. Data may be captured early in
the discovery process. However, at the point of acquisition
researchers may only have minimal contextual information
to describe the asset, such as the date and time of capture, the
instrument type and settings, and identity of the investigator.
It is not until later that more information regarding the
asset will be known, such as measures of data quality. The
acquired data may also become the input for downstream
computational analyses, which will generate new insights
and may result in derived data of its own. Data does not
enter the discovery process fully formed but often goes from
a minimally- to maximally-described state [9].

Automation and self-service curation. Manual data entry
has been noted as one of the key barriers to successful
adoption of data management services [10]. The framework
must enable self-service curation of assets with simple user
interfaces and automated services to reduce manual effort
where possible. However, the diversity of scientific domains
and data and their unique requirements means that simple
one-size fits all asset management applications will not
suffice. At the same time, developing new interfaces and
applications for each use case is prohibitively expensive
and time consuming. The user applications must adapt to
the underlying domain model. They cannot assume a rigid
structure but must be flexible both to the structure of the data
and also the workflow of researchers using the system.

B. Models and Evolution for Scientific Asset Management

Domain models represent the key concepts, behaviors and
relationships of the participants and elements in a real-world
system. Domain models are used to describe scientific assets
in order to link, organize and contextualize them within the
discovery process. Effectively modeling the information for
such diverse and complex domains of science motivates the
need for domain modeling approaches that support well-
defined, structured information. Yet, the process of scientific
discovery is always unfolding and yielding new insights and
understanding of the domain and hence systems to support
it must be able to evolve as well.

Structured data models. We argue that when one con-
siders the complexity of scientific information and the im-
portance of precise descriptions of research and results that
a structured data model is necessary, ideally one based on
a strong formalism such as relational or graph theory. For
example, the entity-relationship model (ERM) can serve as
the underlying meta-model for domain models in scientific
asset management. ERMs are extremely expressive and can
be used to describe data in tabular as well as graph structures
through commonly used idioms. Another important factor in
considering ERMs as an underlying meta-model is that the
majority of scientific data is in practice represented in tabular
structure [11] and therefore is a natural fit for use in scientific
data modeling.

While it has become increasingly popular to abandon
structured data models like ERMs in favor of so-called
NoSQL, schema-less, key-value, or their decades old pre-
decessor entity-attribute value (EAV) databases in order to
avoid data modeling, there is nothing inherently static or
restrictive about ERMs; in fact, most modern database man-
agement systems support schema manipulation. Scientific
query workloads have been shown to depend on complex
query operations not possible with simpler query dialects
and less structured models [12]. More recently, traditional
database systems have added support for features that were
thought of as the domain of “document-oriented” databases,
such as special handling of JSON and text processing, thus
offering the features of relaxed schema with the advantage
of having full capabilities for structured data management.

Evolution and introspection of models. Upfront data
modeling is a significant bottleneck to the adoption and usage
of structured data models. For science applications, it may be
impossible to define a data model upfront and the model may
change in unexpected ways throughout the discovery process.
It is therefore essential that the ecosystem for managing
scientific assets be based around generic tooling that intro-
spects domain models and adapts to them. The systems must
allow scientists to begin with minimally-specified models
and evolve the model and data throughout the discovery life
cycle, while continually refining and increasing the richness
and rigor of the structures used to describe their research.
Likewise, the ecosystem of tools and services for asset
management must be sensitive to the changes in the model.
Since data producers and consumers operate independently
and asynchronously, they must adapt dynamically. Even
in the middle of an interaction with the data, the model
may change based on the interactions of another agent in
the system. Tools should be model-agnostic so that they
may be useful across diverse scientific applications and to
allow model evolution without having to upgrade software
repeatedly for every model or data change.

One key obstacle for supporting flexible yet structured
data models, is that many applications developed in the
popular object-oriented programming (OOP) paradigm are
often developed using object-relational mapping (ORM)
libraries that define their own proprietary query dialects
and suffer from the well-known object-relational impedance



mismatch problem i.e., objects and classes map poorly to
relations. Unlike ORMs, we take an approach that does not
hide or obfuscate the underlying model from the client.
Instead, the elements of a domain model are represented
and exposed directly and transparently through protocols and
interfaces appropriate to the technology platform in which
asset management is implemented. This argument is similar
to the “don’t repeat yourself” or “DRY” principle – that in-
formation should have a single unambiguous representation.
By contrast, ORMs and popular Web frameworks introduce
additional, obfuscated layers that must be updated whenever
the data model changes.

Extending and enriching models with annotations.
While a formal meta-model, like the ERM, is necessary to
model scientific domains, it is insufficient to describe the
complete semantics of the model. In a relational model, one
cannot describe anything more about a particular element in
the model other than that it is a ‘table’ or a ‘column’ or a
‘reference.’ Additional semantics on the model are needed
as a way of extending and enriching the basic concepts of
the meta-model. For this purpose, model annotations are
a way of filling the gap beyond what the meta-model can
provide. The annotations are applied to various levels of
the domain model including the individual schemas, tables,
columns, and foreign key references. The annotations can
be used to indicate additional semantics about an element of
the model, provide presentation hints to the user interface for
how to render a model element or its data in an interface,
and other uses applicable to the domain or applications and
agents involved in mediating and manipulating the schema.
Examples of annotations are shown in Table I.

TABLE I
EXAMPLES OF ANNOTATIONS USED TO DESCRIBE MODELS.

Annotation Description
tag:misd.isi.edu,2015:default Schema or table to be selected by

default by user interface presentation.
tag:misd.isi.edu,2015:url Table or column should be rendered

as an link.
tag:misd.isi.edu,2015:vocabulary Table should be interpreted as a con-

trolled vocabulary.

Heuristics for understanding models. While domain
models will be extremely diverse especially from one sci-
entific domain to the next, we have found that a small
number of heuristics can be very powerful in enabling pre-
sentation and interaction without statically coding behavior
into the applications and tools that operate over structured
data models. Our heuristic approach makes some simple
assumptions about the semantics of the model, particularly
as it concerns rendering, navigating, and updating data in
a complex domain model. For example, when rendering a
detailed view of an entity (i.e., a row) from a table, we can
apply heuristics that denormalize the rendering of the entity
in order to contextualize with its “neighbors” in the linked
data graph of relationships it forms with references to and
from other entities in the ERM. This heuristic strategy can

be applied generally across different models, domains, and
with alternative meta-models as an approach to developing
general tooling for working with asset management systems.
Examples of heuristics are shown in Table II.

TABLE II
EXAMPLES OF HEURISTICS USED TO INTERPRET MODELS.

Heuristic Description
Ignore auto-generated Disable input for system-generated keys.
Extended record When displaying a record, extend the record

with entities joined by many-to-one relation-
ships.

Nested entity When displaying a record, show preview of
entities joined by one-to-many relationships.

C. Storing and Accessing Scientific Assets

Some of the closest approximates to asset management
storage systems (a.k.a., data stores) come in the form of
version control systems and object stores that operate on
data as atomic units and permit changes only through ex-
plicit versioning semantics. In general, conventional storage
systems do not necessarily suffice for the needs of scientific
asset management. Here we discuss the requirements unique
to storing and accessing scientific assets.

Stable naming of assets. Assets and their metadata
are referenced by name, and data names can be shared
between actors by external means or embedded within other
data, which may exist in the same or different data stores.
Therefore, references to data are not necessarily under the
control of the data store holding the referenced data. Rather,
references may be asynchronously communicated between
distributed parties. Thus, within the context of asset man-
agement, a data store must deliver certain guarantees: a
reference to an asset should never become ambiguous, but
rather should always denote one particular asset whether or
not the data is currently available for retrieval; a retrieval
operation should be unambiguous, with a consumer being
able to determine whether they have successfully retrieved
the denoted asset or have encountered an access error.
In short, the retrieval of named assets should be atomic,
consistent and stable.

Immutability of assets. Scientific processes depend on
reliable acquisition and sharing of data in order to support
reproducible results, thus once an asset has been acquired it
must not be mutated. Consumers such as manual reviewers of
imaging data or computational workflows that take complex
data as input must be assured that the assets they consume
are exactly the assets that were produced and shared by the
data producing actors. A close corollary to stable names
for assets (discussed above) is that assets must therefore
be immutable, such that once generated no edits or other
in-place changes may be allowed. It is more acceptable,
though perhaps not ideal, for an asset to be retracted from
the system just as publications may be retracted from the
scientific literature. In these exceptional cases, a marker
sometimes called a “tombstone” should be left in the asset’s



place so that references to the asset may be resolved at least
and consumers can understand why the asset is no longer
available. In data preservation terms, immutability is often
called data or file fixity meaning the contents of a file are
fixed and cannot be changed.

Versioning of assets. At times, a new asset will be
generated based on incremental changes starting from an
existing asset and in such cases, these assets enter the system
as new versions of an earlier asset. Versioning, however, must
be done explicitly as a new asset with an explicit version
relationship to another existing asset and as stated earlier
must not mutate an asset in place. To assist in this a data
store of assets should issue a name for an asset only once
and may issue version-qualified names to add convenience
to the consumers and references of assets.

Linking and provenance of assets. Versioning and other
operations that derive one asset from another further motivate
the need for facilitating models of provenance. We see these
as one natural application of the general requirement for
linked data, where the relationship between data is seman-
tically described in terms of the processes and actors that
produced an asset and existing models of provenance [13]
should be employed for this purpose.

D. Aggregation and Exchange of Assets
Methods must exist to extract collections of assets under

management for consumption by external human or com-
putational agents. Several alternatives exist for exchanging
complex information via various forms of data aggregation
packages, for example Research Objects [14] or structured
file formats such as HDF. These methods can be used to
facilitate exchange of asset sets from a DAMS.

E. Policies for Managing Assets
Numerous forms of policy must be considered when

managing scientific assets.
“Protected” data. Research involving sensitive data col-

lect during studies involving human subjects are governed by
policies administered by Institutional Review Boards (IRBs)
or other bodies that set Data Use Agreements (DUAs). These
data must be handled in compliance with rules governing
privacy and strict data sharing limits. Under these circum-
stances, even when research concludes the IRB or DUA
policies may stipulate how storage systems must be purged
of stored information.

Private use of data. In general, data are of great value to
the researchers that produce them. Data sharing embargoes
specify limitations to access of data while the investigators,
those that generated the data, use them in analysis and
until they have been published. The ecosystem of tools
for asset management must be cognizant of the policies,
whether governed by formal policies or defined by individual
researchers, and the tools must limit use and sharing of data
in compliance with the specified policies.

III. SCIENTIFIC ASSET MANAGEMENT ARCHITECTURE

Based on the requirements and characteristics of asset
management from our analysis in the previous section, we

have defined the scientific asset management architecture
(fig. 1). The canonical architecture of the Web provides
a blueprint for a community of active participants (users
and automated agents) to interact by using simple universal
service interfaces to manipulate passive resources on the
Web, and we extend these patterns according to the unique
requirements of scientific asset management to enable an
ecosystem of tools and services for discovery science. Our
goal is not to define an exhaustive collection of providers
for various capabilities but rather to identify general classes
of services and tools that are necessary for implementing
asset management solutions in various configurations and for
diverse scientific applications. We now describe the primary
components of our scientific DAM architecture.

Storage

Catalog

Automation

Application

Ingest

E
xport

Policy

Control Flow Data Flow

Fig. 1. Scientific Asset Management Architecture.

Application. Applications provide adaptive user interfaces
for acquiring, curating, and consuming assets. They are
model-agnostic and function by introspecting the data stores,
in particular the structured data catalogs that hold the domain
models and descriptive information. These applications sup-
port searching and browsing paradigms to help users locate
assets of interest. They let users define custom subsets and
slices of data and support entry and editing of new data
and annotating of assets. Applications must be model-driven
and reflect the current state of the catalogs and data stores
without hard-coded assumptions and semantics about domain
models.

Catalog. The Catalog layer represents specialized forms
of the data store for recording, querying, and retrieving de-
scriptive information (i.e., metadata) about scientific assets.
As specified in the requirements, in order for the catalog to
sufficiently handle domain models for scientific applications,
it must support structured data models, model evolution,
interfaces so that clients can introspect domain models,
complex query operations and named queries, and model
annotations. The catalog is primarily a passive service that
applications and other tools (like ingest and export pipelines)
interact with to store, query, and retrieve metadata about
assets in the system.

Storage. The Storage layer represents the data store for
bulk asset storage and retrieval. It must satisfy requirements
for transactional update, permanent naming of assets, and
non-destructive updates. It must ensure the immutability



or fixity constraints and may support versioning. Like the
catalog, the data store is primarily a passive service that
provides interfaces for applications and other utilities (like
ingest and export pipelines) to store and retrieve scientific
assets.

Ingest. The role of ingest utilities and services is to
identify new assets of interest, extract and harvest metadata
from them, record descriptive information so that assets
may be contextualized with who, what, when and how an
asset was generated, which may only be possible to do at
acquisition. It must interact with catalog and storage services
to record and store assets. The ingest layer may be configured
offline or may be administered through applications.

Export. Export services or utilities, on the other hand,
extract assets and metadata from catalog and storage services,
serialize and package them in well-defined package formats,
and may deposit them on recipient systems. As with the
ingest layer, the services and utilities of the export layer may
take an active (e.g., by polling) or passive (e.g., responding
to events or other signals) role in identifying what and when
to export assets. They may also be configured offline or
administered online through applications.

Automation. A wide range of data management and
manipulation services may be automated in an asset man-
agement system. The services and utilities of the automation
layer represent a potentially broad array of capabilities that
will be needed in scientific asset management. Automation
services will primarily take an active role interacting with
catalog and storage layer services to perform a variety
of domain- and task-dependent operations, including but
not limited to metadata extraction and harvesting, format
conversion, image stacking, image tiling, down-sampling,
applying compression to various content types, or indexing
data.

Policy. The Policy layer represents a broad class of
services, utilities, and other tools to help specify, evaluate,
enforce, and otherwise make policy decisions. These tools
tend to play a central and ubiquitous role in all manner of
distributed systems. In asset management, the components of
the policy layer may be used to express and evaluate policy
rules for determining individual and role-based access to
assets and metadata, for example. The proposed architecture
does not specify or require that policy be implemented
centrally or decentralized by the individual components of
the different layers of the architecture which may make
independent and local policy decisions in practice.

IV. DERIVA: A PLATFORM FOR SCIENTIFIC ASSET
MANAGEMENT

Based on the above analysis, we have created a DAMS
platform for eScience applications called the Discovery
Environment for Relational Information and Versioned
Assets (DERIVA). The implementation of the DERIVA plat-
form consists of a multi-tenant relational data service for
domain models (ERMREST), a client library (ERMRESTJS),
an object storage service for assets (HATRAC), a suite of
adaptive user interface applications (CHAISE), a suite of

utilities for ingest and export of assets and metadata (IObox),
an asset aggregation package format (BDBag), and a shared
authentication layer (WebAuthN).

A. CHAISE

CHAISE is the user interface application suite for DERIVA.
CHAISE is implemented as JavaScript programs that dy-
namically generate adaptive, model-driven user interface
applications for discovery, analysis, visualization, data entry,
annotation, sharing and collaboration over scientific assets.
CHAISE applications introspect and dynamically render re-
lational data resources based on a small set of baseline
assumptions, combined with its rendering heuristics, which
may be influence, informed or overridden by model anno-
tations defined on the domain models that are cataloged in
ERMREST, and finally user preferences further refine the
interfaces.

CHAISE is intended to support specific asset management
interactions. As such, its presentation capabilities are nar-
rowly scoped. CHAISE makes a few assumptions about how
users will interact with the underlying data. A few repre-
sentative but non-exhaustive examples of these assumptions
include:

• Search, explore, and browse catalogs of assets;
• Linked data navigation between records;
• Add, edit, remove records from the catalog;
• Create, alter, or extend the domain model in the catalog;
• Subset and export collections of assets and metadata;
• Share collections with others;
• Annotate records with tags or controlled vocabulary

terms.
CHAISE is structured as a set of programs that generate

interfaces to search and browse assets using the powerful
‘faceted search’ paradigm (see fig. 3); deep drill-down, visu-
alization, and ‘linked data’ navigation on individual records
(see fig. 4); and record entry and edit. Internally, the CHAISE
applications are built on AngularJS 1, a front-end model-
view-controller (MVC) framework developed by Google,
and a common library of routines used across CHAISE
applications (see fig. 2). CHAISE uses the ERMRESTJS
library, which provides JavaScript language bindings for the
ERMREST protocol and a comprehensive set of APIs for
working with the ERMREST relational data service.

ERMrestJSAngularJS

Chaise Common

Chaise 
RecordSet

Chaise 
Record

Chaise 
Record-Edit

Browser ERMrest Hatrac

Fig. 2. Chaise layered architecture.

1https://angularjs.org



Fig. 3. Faceted search application.

Fig. 4. Record details application.

CHAISE makes no assumptions about the structure of the
underlying data model, such as its tables, columns, keys,
and foreign key references. It begins by introspecting the
data model by getting the schema resource from ERMREST.
It then uses rendering heuristics to decide, for instance,
how to flatten a hierarchical structure into a simplified
(or “denormalized”) presentation for searching and viewing.
CHAISE then interprets the model annotations to modify or
override its rendering heuristics, for instance, to hide a col-
umn of a table or to present a related entity as an embedded
Web resource in an inline frame (iframe). CHAISE uses
model annotations to determine when and how to integrate
visualization tools into the display, including D3, Plot.ly, 3D
volume rendering, and 2D, pyramidal, tiled image rendering.

B. ERMREST

ERMREST (Entity Relationship Model via Representa-
tional State Transfer) is a relational data service for the
Web, and allows general entity-relationship modeling and
manipulation of data resources by RESTful access methods.
ERMREST serves as the metadata catalog of DERIVA and
enables the evolving and dynamic data models needed for
describing, contextualizing, and linking scientific assets.

The design goals for ERMREST were to enable non-expert
users to create and evolve data models that represent the
semantic concepts in their domain without the typical round
trips from user to developer to database administrator and
back. Many use cases can map into simple models with just
a handful of entities and relationships and non-experts can

easily think about their domain in terms of the main concepts
that they want to manipulate [11]. By providing methods
for incrementally creating these models, and by allowing
users to express domain concepts directly in the catalog,
it offers a platform where the data models can be created
and maintained by the user community. While there will be
situations in which a more formal up-front data modeling
activity will be required and for which the full power of
SQL may be needed, a significant number of important usage
scenarios fall within the design space of ERMREST.

Our approach was to develop a service that supports
resource manipulation idioms common to RESTful Web
services. ERMREST maps Entity, Attribute, Schema, Table,
Column, and other relational concepts to Web resources,
which are referenced by Web resource identifiers (i.e., URIs).
It supports the following interfaces:

• catalog: reference, retrieve, create, alter, delete “cata-
log” resources, each of which is an independent rela-
tional data store;

• schema: reference, introspect, and alter entity-
relationship models (i.e., schema name spaces, table
and column definitions, key and foreign key constraints,
etc.);

• entity: reference, query, and manipulate entity records
(i.e., rows of a table);

• attribute: reference, query, and manipulate projected
attribute records (i.e., subsets of attributes of relations);

• attributegroup: reference and query projected attribute
group records (i.e., attributes grouped by a subset of
attributes of relations);

• aggregate: reference and query projected aggregates
with supported aggregate functions such as count, min
and max.

https://.../catalog/1/entity/specimen/initials=res/slide/createdOn::gt::2015/scan

URL Path Tokenizer

URL Path Parser

Model Validator

Query Constructor

Query Executor

table: 
specimen

column:
initials

table: slide column: 
createdOn

table: scan

SELECT scan.* FROM scan JOIN slide ON (…) JOIN specimen ON (...) 
WHERE specimen.initials = ‘res’ AND slide:createdOn > 2015;

Foreign Key 
Reference

Foreign Key 
Reference

Fig. 5. ERMREST query processing example, showing the query URI
(top), model definition (middle right), conceptual processing stages (middle
left), and generated SQL statement (bottom).

The core of the implementation is in query processing. A
request consists of the HTTP method (e.g., GET, POST, PUT,
DELETE), URL path (e.g., catalog/1/entity/scan),
and optional HTTP message body (e.g., JSON or CSV
resource representation). The query language is a formally-
defined context-free grammar in BNF notation and is parsed



using a generated “look ahead left-to-right” (LALR) parser.
Fig. 5 depicts the query processing steps taken to satisfy
each request to ERMREST.

First, the request handler tokenizes and parses the URL
path into an Abstract Syntax Tree (AST) representation
of the query. The catalog resource (e.g., catalog/1/)
indicates which relational data store to address with the
query. Next, the interface part of the path (e.g., entity/
indicates which API will ultimately be used to answer the
query. The remainder of the URL is what we call the data
path, a pseudo-hierarchical expression that references, joins,
and filters tables of entities and attributes. In the example,
the first table in the path is the specimen table, and it
is filtered by the binary predicate initials=res, which
references the specimen.initials column in the left
operand. The next URI component, which is delimited as
usual by the ‘/’ character, implicitly specifies a join with
the slide table resource. The model validator will ensure
that an unambiguous foreign key reference exists, in either
direction, between the specimen and slide tables. Next,
the filtered product of joined tables will again be filtered,
this time by the binary predicate createdOn::gt::2015
which filters slides that were created on or after year 2015.
Finally, the last URI component again specifies an implicit
join, in this case with the scan table.

The entity interface returns whole entities (i.e., rows of
a table resource) and therefore does not require an explicit
projection of attributes. With the attribute interface,
however, URL data paths terminate with a list of attributes
to be returned. More complex data path expressions are
supported including projections involving multiple tables in
the expression, joins between multiple tables at different
depths of the expression hierarchy, table alias assignments
and referencing, aggregation and grouping.

Finally, ERMREST recently incorporated row-level access
control policies from its underlying PostgreSQL database
engine. Combined with user- and role-based authentication
from WebAuthN (discussed later), ERMREST can enforce
fine-grain access control over the contents of the catalog.
For example, permissions may be granted on tables based
on group membership; visibility or editing may be enforced
on a row-by-row basis, and more sophisticated policies are
also possible.

C. HATRAC

HATRAC (pronounced “hat rack”) is a Web service for
storage and retrieval of scientific assets as Web resources in
a RESTful service model. HATRAC treats scientific assets
as generic, opaque, byte-sequences and may be viewed as
an object store for asset management. It supports atomic
operation semantics – that is, an asset is created and named,
updated or deleted in an atomic operation where the oper-
ation either finishes and succeeds completely as expected
or terminates the operation. Once an asset has been stored
in HATRAC, it guarantees data fixity, first by enforcing
immutability of stored objects, and second by maintaining
check sum message digests which can be used to ensure

data integrity. An “update” of an asset in HATRAC is non-
destructive, such that the service preserves the current state of
the asset while adding a new version of the asset in a version-
qualified naming scheme. Similarly when “deleting” an asset,
the service marks the named asset as deleted but does not
release the name for reuse, so that it prevents names from
being reused and potentially violating the stable reference
semantics required by asset management. Finally, HATRAC
supports a hierarchical naming scheme and allows users to
define access control policies on assets by name and by
subtree names in the name space to simplify management
of access controls. At present, HATRAC supports two con-
figurations: it may be deployed as a standalone server with
assets stored on a local or remote file system; or it may be
deployed on Amazon AWS with assets stored in the Amazon
S3 object store.

D. IObox

IObox is a suite of modular utilities for ingest and export
of assets to and from DERIVAand external data sources.
Asset management for science must support diverse sources
and formats. The utilities of IObox may be combined in a
variety of configurations to support the unique requirements
of different scientific applications. The utilities in this project
are generally categorized in terms of extract, transform,
or load (ETL) operations and uses the BDBag package
format. In general, extract operations acquire assets from
data sources (files or databases) and generate a BDBag
package; transform operations alter the format or structure
of the contents of a BDBag package; and load utilities take
a BDBag package and upload the contents to catalogs and
storage services.

At present, the utilities in the IObox suite include:

• bag2dams: takes a bag and imports it into DERIVA data
stores;

• dams2bag: extracts metadata and assets from DERIVA
data stores, serializes the contents, and generates a bag;

• sql2bag: connects to an ODBC-compatible database
management server (e.g., Microsoft Access, Microsoft
SQLServer, MySQL, etc.), executes user-specified
queries, serializes the results and generates a bag;

• xls2bag: parses a Microsoft Excel spreadsheet and gen-
erates a bag;

• xml2bag: parses eXtensible Markup Language (XML)
documents, serializes in tabular format, and generates a
bag;

• iobox-win32: uses Win32 APIs to “watch” a Mi-
crosoft Windows file system, as files are generated
asynchronously by connected instruments (e.g., micro-
scopes, sequencers, etc.), it executes regular expression
rules to identify files and extract metadata, and ingest
directly to the DERIVA DAMS.

In addition, we have developed or integrated parsers for
many important data formats for scientific assets, including
but not limited to HDF5, NetCDF, CSV, Excel, TIFF, CZI,
OME, NIfTI, DICOM, FASTA, FASTQ, and VCF.



E. BDBag

BDBag is a specification for asset aggregation packages.
BDBag extends The BagIt File Packaging Format (V0.97) 2,
incorporates the BagIt Profiles Specification 3, and adopts
the Research Objects [14] semantic model for describing
packages and provenance. The BDBag utilities are a col-
lection of software programs for working with the enhanced
specifications for bags. These utilities combine various other
components such as the BagIt creation utility and the BagIt
profile validator utility into a single, easy to use software
package.

F. WebAuthN

WebAuthN is a compact, modular authentication provider
framework written to support Python-based, RESTful Web
services and is used by ERMREST and HATRAC. It allows
deployment-time configuration of several alternative identity
and attribute provider modules to establish client security
contexts for Web requests by talking to a local or remote
provider. The client provider is used when estab-
lishing the client (or user) identity while the attribute
provider is used when establishing additional attributes,
such as roles or groups associated with the client identity.

WebAuthN

D
atabase C

lient 
P

rovider

D
atabase A

ttribute 
P

rovider

O
penID

 C
onnect 

C
lient P

rovider

G
lobus O

auth2 C
lient 

P
rovider

G
lobus O

auth2 
A

ttribute P
rovider

ERMrest Hatrac

RDBMS
Google
& other Globus

Fig. 6. WebAuthN layered architecture.

At present, WebAuthN is distributed with three identity
provider (IdP) integrations:

• OAuth2 OpenID Connect Provider: any standard
OpenID Connect IdP, such as Google, for client au-
thentication;

• Globus OAuth2 Provider: Globus IdP which also sup-
ports delegated group management and access to nu-
merous campus IdPs;

• Standalone Database Provider: standalone database IdP
that can be deployed with the DERIVA suite.

The interfaces are well-defined and alternative implementa-
tions may be developed thus integrating different IdPs (e.g.,
LDAP, Active Directory, etc.) into DERIVA easily.

2https://tools.ietf.org/html/draft-kunze-bagit-13
3https://github.com/ruebot/bagit-profiles

V. USE CASES

To validate the utility of a DAMS based approach to
scientific data management as well as the applicability of
the DERIVA platform, we have applied DERIVA to a range of
different eScience use cases. In each situation, the resulting
solution was provided to domain scientists who are using
it as part of their ongoing scientific explorations. Many of
these case studies are in their initial phase and we do not
have quantitative data as to the impact of DAMS based
approaches. However, from these studies we can conclude
that the underlying DERIVA platform can be readily adapted
to diverse domains, and that the domain scientists report that
these systems are simplifying the process of getting their
science accomplished.

Generation of atlases of kidney development. The
goal of this collaboration is to collectively annotate high-
resolution microscope images so as to trace the devel-
opment of anatomical structure in the developing human
kidney. DERIVA automatically ingests images taken from
a microscope and puts them into the asset catalog during
which high-quality images are identified based on visual
inspection. The domain model for images was extended to
include annotation locations, an anatomical term obtained
from a controlled vocabulary and a running set of comments
on the annotation. Facets are used to manage annotation
status. Policy mechanisms are used to separate the ability
to annotate, comment, and make the final decision on the
annotation value.

Platform for Phenotype Wide Expression (PheWAS)
from neuroimaging studies. For a given brain scan, it is
possible to computationally produce a large number of phe-
notypes such as the size, density and curvature of each region
of the brain. By aggregating these phenotypes across multiple
subjects it is possible to make connections to specific genetic
conditions. In practice, domain scientists become rapidly
overwhelmed by the tens of thousands of files that contain the
phenotype values, by keeping track of image based quality
control, and the association of statistical analysis to specific
data sets. We are using DERIVA to automatically ingest all
of the analysis results and associate them with images, to
track necessary manual review of some of the results, and to
assemble data sets of phenotype to input to statistical analysis
tools to look for significant correlations.

Determination of three dimensional structure of G-
Protein Coupled Receptors (GPCR). Protein structure
determination by X-Ray diffraction requires many steps to
synthesize and analysis steps to crystallize and measure the
protein. At each stage measurements are made and analyzed,
and at the final step, large amounts of diffraction data must
be collected and processed to reveal the protein structure, We
are using DERIVA to manage the data that is being generated
by a multi-site consortium. Our platform is automatically
acquiring and integrating data spanning protein design, flow
cytometry, chromotography and gel electrophorsis. Policy
mechanisms distinguish between academic and industrial
affiliates.



VI. RELATED WORK

Digital asset management systems have been used widely
by creative and business organizations, however, the closest
comparisons supporting science may be imaging [15] and
microscopy management systems [16]. There is a lack of
general-purpose asset management capabilities that can span
a wide range of multi-domain, multi-modal scientific data
and which support the dynamic, rapidly evolving, hetero-
geneous research activities. Electronic Notebooks such as
IPython and Jupyter, are another approach to organizing and
visualizing scientific data. However, these approaches do not
provide facilities to capture data from instruments. and they
are not intended to manage large volumes of data throughout
their many transformations.

Current systems and tools to support data-driven discovery,
such as computational pipeline systems (e.g. [17]) tend to
focus on computation and data analysis. While analysis is
clearly important, we assert that data is the currency around
which discovery is made and we should take the perspective
that discovery is largely data-centric, not process-centric.

Digital repository systems, such as DSpace [18] and
Globus Publish [19], may be used to develop institutional
repositories which support preservation of digital works and
enable open access to data. Digital repositories are primarily
concerned with publication, as opposed to the discovery
process itself where ones understanding of the domain model
may evolve considerably.

Dataspaces [20], and SQLShare [21] also advocate
the need for incrementally expanding and evolving data
workspaces for individual or collaborative usage. [22] also
argue that introspection is a necessity for dynamic, fluid
databases, a concept that we further develop in our approach.
While these approaches agree with our observations of
rapidly evolving, heterogeneous scientific data, they only
address query and analysis not capture of assets, organization
and annotation.

VII. CONCLUSIONS AND FUTURE WORK

The challenges of data management in eScience appli-
cations require a new data-centric approach and we have
identified digital asset management as being suitable. We
have identified a common set of principles for applying
asset management to scientific data and have shown through
diverse use cases that a platform built on these principles can
benefit a broad range of eScience applications.

In future work, we plan to provide tighter integration
of ontologies into the platform. Of particular interest is in
defining and refining ontologies as part of the evolution
process. Currently, automation is implemented in a combi-
nation of cron jobs and shell scripts. We plan to develop a
more complete automation service around event-condition-
action rules to trigger automation activities and to allow
user interfaces to specify automation activities on given
events. We also plan to provide more user friendly tools
for dynamically evolving the data model. We will need to
introduce model versioning along with value versioning as
part of this work. Finally, we are integrating online analytics

into the system, with the goal of allowing the presentation
and interaction to adapt to common usage patterns.

ACKNOWLEDGMENTS

The authors wish to thank the DERIVA developers: Jen-
nifer Chen, Joshua Chudy, Mike D’Arcy, Laura Pearlman,
Mei-Hui Su, Jessie Wong, and Serban Voinea. Alejandro
Bugacov, Anoop Kumar, Hongsuda Tangmunarunkit, and
Cristina Williams have contributed significantly to use case
analysis and deployments. We also thank our science col-
laborators, Andrew McMahon, Jill McMahon, Seth Ruffins,
Michael Hanson, Raymond Stevens, Scott Frasier, Donald
Arnold, and William Dempsey.

REFERENCES

[1] P. Fox and J. Hendler, “The Science of Data Science,” Big Data, vol. 2,
no. 2, pp. 68–70, jun 2014.

[2] C. Goble et al., “Accelerating Scientists’ Knowledge Turns,” in Com-
munications in Computer and Information Science, 2013.

[3] B. L. Claus and D. J. Underwood, “Discovery informatics: its evolving
role in drug discovery,” Drug Discovery Today, vol. 7, no. 18, pp.
957–966, sep 2002.

[4] S. Kandel et al., “Enterprise data analysis and visualization: An inter-
view study,” Visualization and Computer Graphics, IEEE Transactions
on, vol. 18, pp. 2917–2926, 2012.

[5] R. G. Steen et al., “Why Has the Number of Scientific Retractions
Increased?” PLoS ONE, vol. 8, no. 7, 2013.

[6] C. G. Begley, “Six red flags for suspect work.” Nature, vol. 497, no.
7450, pp. 433–4, may 2013.

[7] J. Gray et al., “Scientific data management in the coming decade,”
SIGMOD Rec., vol. 34, no. 4, pp. 34–41, 2005.

[8] I. M. J. C. R. Licklider, “In Memoriam: J. C. R. Licklider 1915-1990,”
1990.

[9] T. Clark et al., “Micropublications: a semantic model for claims,
evidence, arguments and annotations in biomedical communications,”
Journal of Biomedical Semantics, vol. 5, no. 1, p. 28, 2014.

[10] B. Plale et al., “SEAD Virtual Archive: Building a Federation
of Institutional Repositories for Long-Term Data Preservation in
Sustainability Science,” International Journal of Digital Curation,
vol. 8, no. 2, pp. 172–180, nov 2013. [Online]. Available:
http://ijdc.net/index.php/ijdc/article/view/8.2.172

[11] B. Howe et al., “Database-as-a-Service for Long-Tail Science,” Port-
land, Oregon, 2011.

[12] S. Jain et al., “SQLShare: Results from a Multi-Year SQL-as-a-Service
Experiment,” in SIGMOD’16. San Francisco, CA, USA: ACM, 2016.

[13] L. Moreau, “The Foundations for Provenance on the Web,” Founda-
tions and Trends R© in Web Science, vol. 2, no. 2-3, pp. 99–241, 2010.

[14] S. Bechhofer et al., “Why linked data is not enough for scientists,”
Future Generation Computer Systems, vol. 29, no. 2, pp. 599–611,
2013.

[15] D. S. Marcus et al., “The Extensible Neuroimaging Archive Toolkit:
an informatics platform for managing, exploring, and sharing neu-
roimaging data.” Neuroinformatics, vol. 5, no. 1, pp. 11–34, 2007.

[16] J. R. Swedlow et al., “Bioimage informatics for experimental biology,”
Annual review of biophysics, vol. 38, pp. 327–46, jan 2009.

[17] J. Goecks et al., “Galaxy: a comprehensive approach for supporting
accessible, reproducible, and transparent computational research in the
life sciences.” Genome biology, vol. 11, no. 8, p. R86, 2010.

[18] M. Smith et al., “DSpace: An Open Source Dynamic Digital Reposi-
tory,” D-Lib Magazine, vol. 9, no. 1, 2003.

[19] K. Chard et al., “Globus data publication as a service: Lowering bar-
riers to reproducible science,” in 11th IEEE International Conference
on eScience, 2015.

[20] M. Franklin et al., “From Databases to Dataspaces: A New Abstraction
for Information Management,” 2005.

[21] B. Howe et al., “Automatic example queries for ad hoc databases,” in
Proceedings of the 2011 international conference on Management of
data - SIGMOD ’11. New York, New York, USA: ACM Press, jun
2011, p. 1319.

[22] A. Halevy et al., “Principles of Dataspace Systems,” Chicago, Illinois,
USA, 2006.


